Gutdver.ru

Отделка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автоматический выключатель значение тока мгновенного расцепления

Автоматический выключатель значение тока мгновенного расцепления

При проведении испытаний соблюдают следующие условия:
— выключатель устанавливают вертикально;
— испытуемый АВ отключается от сети;
— испытания проводят при частоте сети (50±5) Гц;

Выполнение испытаний срабатывания расцепителей
Собрать схему проверок срабатывания расцепителей АВ согласно с инструкцией изготовителя используемого нагрузочного устройства. Электромагнитный расцепитель срабатывает без выдержки времени. Комбинированный расцепитель должен сработать с обратнозависимой от тока выдержкой времени при перегрузке и без выдержки времени при коротких замыканиях. Ток уставки расцепителей не регулируют. В каждом полюсе автомата смонтирован свой тепловой элемент, воздействующий на общий расцепитель автомата. Чтобы убедиться в правильности действия всех тепловых элементов, необходимо проверить каждый из них в отдельности. При одновременной проверке большого количества автоматов испытание тепловых элементов по начальному току срабатывания нецелесообразно, т.к. на проверку каждого автомата затрачивается несколько часов. В связи с этим тепловые элементы рекомендуется проверять испытательным током, равным двух- и трехкратному номинальному току расцепителя при одновременной нагрузке испытательным током всех полюсов автоматов.
Если тепловой элемент не срабатывает, то автомат к эксплуатации не пригоден и дальнейшим испытаниям не подлежит. У всех тепловых элементов должны быть проверены тепловые характеристики при одновременной нагрузке испытательным током всех полюсов автомата. Для этого все полюса автомата соединяют последовательно. При проверке электромагнитных расцепителей, не имеющих тепловых элементов, автомат включают вручную и устанавливают такую величину испытательного тока, при которой автомат отключится. После отключения автомата ток снижают до нуля и в указанном порядке проверяют электромагнитные элементы в остальных полюсах автомата.
Время срабатывания автомата определяется по шкале секундомера испытательного оборудования. Времятоковые характеристики срабатывания расцепителей АВ должны соответствовать калибровкам и паспортным данным завода-изготовителя. Проверка срабатывания электромагнитных и тепловых расцепителей АВ в объеме 30%, из них 15% наиболее удаленных от ВРУ квартир. При несрабатывании 10% проверяемых АВ, производится проверка срабатывания всех 100% АВ.

Контроль точности результатов измерений
Контроль точности результатов измерений обеспечивается ежегодной поверкой приборов, применяемых для испытания АВ, в органах Госстандарта РФ. Приборы должны иметь действующие свидетельства о госповерке. Выполнение измерений прибором с просроченным сроком поверки не допускается.
Оформление результатов измерений
Результаты испытаний оформляются протоколом «Проверки автоматических выключателей напряжением до 1000В».
Требования к квалификации персонала
К выполнению измерений допускают лиц, прошедших специальное обучение и аттестацию с присвоением группы по электробезопасности не ниже III при работе в электроустановках до 1000 В, имеющих запись о допуске к испытаниям и измерениям в электроустановках до 1000 В.
Проверка работоспособности АВ производится по распоряжению только квалифицированным персоналом в составе бригады в количестве не менее 2 человек. Производитель работ должен иметь 5 разряд, члены бригады — не ниже 4 разряда.
Обеспечение безопасности при выполнении измерений.
При проверке работоспособности автоматических выключателей необходимо руководствоваться требованиями Межотраслевых правил по охране труда (правила безопасности) при эксплуатации электроустановок.
Испытания можно проводить только на отключенной электроустановке.
Испытания должны проводиться по распоряжению бригадой в составе не менее 2 человек.
Присоединение и отсоединение испытательного комплекта, нагрузочных концов необходимо производить при снятом испытательном напряжении;

Модульный автоматический выключатель (MCB) — все, что вы хотели знать, но стеснялись спросить. Глава 2.

2.1. Характеристики срабатывания и диаграммы импульсного срабатывания.
2.2. Способы чтения диаграммы импульсного срабатывания.
2.3. Различия между характеристиками срабатывания.
2.4. Стандарты для характеристик срабатывания.

Когда мы говорим о характеристиках срабатывания или, лучше сказать, их визуальном представлении, речь идет о кривых времени срабатывания как функции коэффициента (кратности) номинального тока. На рисунке 13 для визуализации используется характеристика В. Посмотрим сначала на характеристики биметаллической пластины. Зона отключения ограничена двумя кривыми – условного тока не расцепления и условного тока расцепления. Область слева от тока не расцепления называется безопасной зоной не расцепления. В этой области не должно происходить срабатывание автоматического выключателя. Справа от кривой отключающего тока находится зона безопасного расцепления. В этой области автоматический выключатель должен прерывать всякий ток. Вы видите две отмеченные точки – это выбранные значения отключающего и не отключающего тока. Они используются в качестве опорных точек для защиты от перегрузок. В соответствии со стандартами МЭК, ток в 1,45 раза превосходящий In и подаваемый на протяжении не менее 60 мин. Должен вызвать отключение автоматического выключателя, а токи от 1,13 до 1,45 In, длительностью менее 60 мин. и токи менее 1,13 In любой продолжительности не должны вызывать срабатывание.

Давайте рассмотрим пример возникновения аварийной ситуации (рис. 14).

Читайте так же:
Можно ли с двойного выключателя сделать тройной

Вследствие непредвиденной нагрузки, сила тока стала в 3,1 раза выше In. Когда сработает автоматический выключатель?

Чтобы выяснить это, необходимо провести линию через точку тройного значения In. Вначале мы достигаем точки пересечения с кривой условного не отключающего тока на отметке 2,1с. Это означает, что не должно происходить срабатывание автоматического выключателя в течение первых 2,1с в условиях перегрузки. В следующей точке происходит пересечение с кривой условного отключающего тока на отметке 40 с. Это означает ,что должно происходить срабатывание автоматического выключателя в течение первых 40с в условиях перегрузки. Другими словами, срабатывание автоматического выключателя не должно происходить в течение первых 2,1с и срабатывание должно произойти не позднее 40 с в условиях перегрузки.

Как мы видим, тепловой расцепитель дает хорошую защиту от перегрузок. Однако в случае более высоких токов перегрузки, возникающих при коротком замыкании, чувствительность биметалла снижается. Как упоминалось ранее, только электромагнитые расцепители обеспечивают хорошую защиту от короткого замыкания. Точка отключения электромагнитных устройств зависит только от величины, но не от продолжительности тока короткого замыкания. Этим объясняется ортогональность кривой характеристик срабатывания. Вернемся к нашему примеру. Что произойдет в случае подачи тока перегрузки 3,1 In?

Точка пересечения с кривой условного не отключающего тока находится на отметке 0,01с, а точка пересечения с кривой условно отключающего тока по прежнему на отметке 40с. Таким образом, при коротком замыкании, при помощи электромагнитного расцепителя, цепь можно разомкнуть в 400 раз быстрее, чем при помощи обычного теплового расцепителя. Если ток короткого замыкания в 6 и более раз превосходит In, в соответствии со стандартом он будет отключен за время менее 0,1с.

Теперь сравним характеристики выключателя с характеристиками обычного провода. В показанном на картинке случае видно, что тепловой расцепитель может защищать от токов перегрузки до 5 In. Но если ток перегрузки будет выше, тепловой расцепитель не сможет обеспечить достаточную защиту. Но имея оба расцепителя, автоматический выключатель обеспечивает защиту при любых неполадках.

В МЭК имеется два основных стандарта для автоматических выключателей. АББ предлагает характеристики B, C, В в соответствии МЭК 50345 и характеристики K и Z в соответствии с МЭК 50030-2 (рис. 15). Характеристики B, C и D имеют одинаковую тепловую характеристику срабатывания, но отличаются по магнитным характеристикам. По стандарту МЭК 50345 срабатывание не должно происходить при значении тока не более 1,13 In. Время срабатывания должно быть более 60 минут при токе от 1,13 до 1,45 In и менее 60 минут, если номинальный ток превышает номинальное значение более, чем в 1,45 раза. Зона электромагнитного срабатывания для характеристики В находится в диапазоне от 3 до 5 In. Для С зона срабатывания лежит в диапазоне между 5 и 10 In, а для D, соответственно, в интервале 10 -20 In.

Что же касается характеристик K и Z, в соответствии с МЭК 50030-2, у производителя автоматических выключателей значительно больше свободы при определении кривой. Без срабатывания – ток до 1,05 от номинального значения, время срабатывания более 2х часов – от 1,05 до 1,2 In; время срабатывания менее 60 мин – в 1,2 раза выше In; время срабатывания менее 2х минут – в 1,5 раза, время срабатывания менее 2х секунд – в 6 раз. Также как и с описанными ранее характеристиками B,C и D, отличия имеются только в электромагнитных характеристиках срабатывания. Диапазон мгновенного срабатывания находится между 2 и 3 In для характеристики Z и между 10 и 14 In для характеристики K.

На одном рисунке (рис. 15) приведено пять характеристик срабатывания. Видно, что К и Z обеспечивают лучшую защиту от сверхтока, благодаря тому, что эти кривые лучше спозиционированы. В частности это интересно в случае характеристики K. Она сочетает в себе стабильность при пиковых токах с хорошей защитой кабелей, благодаря низкому выбранному току.

Теперь мы можем сравнить основные отличия и преимущества различных характеристик срабатывания. Начнем с характеристик срабатывания B и Z. Во- первых диапазон магнитного срабатывания у характеристики Z находится ниже, чем для В. Точнее, кривая условного тока нерасцепления для В совпадает с кривой условного нерасцепления Z.

Следующее, что мы заметим, это то, что токи для Z ниже, чем для В. Эти два свойства приводять к тому, что для Z, по сравнению с В когут использоваться кабели на 67% длиннее, без изменения русловий срабатывания и без увеличения поперечного сечения. АББ обеспечивает характеристику Z для токов начиная с 0,5А, в то время, как характеристика B доступна с 6А.

Читайте так же:
Инструкция по установке двухклавишного выключателя

Рассмотрим области применения этих двух характеристик. Характеристику В можно рассматривать как стандартную характеристику. Она используется в частном и коммерческом строительстве, а также в других случаях, когда нет особых требований по условиям эксплуатации.

Z ориентирована на специальные применения, когда требуется наиболее быстрое отключение и отсутствуют пусковые токи. К специальным применениям можно отнести:

  • цепи управления с высоким сопротивлением и отсутствием пиковых токов;
  • цепи трансформаторов напряжения;
  • измерительные цепи с датчиками;
  • защита полупроводников для специальных задач.

Теперь сравним характеристики С, D и K. Интересно рассмотреть поведение трех характеристик срабатывания при пусковом токе:

Характеристика С с 5-ти кратным номинальным током чувствительна к пусковым токам.

Характеристика D с 20-ти кратным номинальным током имеет большую устойчивость к пусковым токам. Однако отключающий ток в 20 раз превосходящий номинальный может вызвать проблемы, связанные с несрабатыванием из-за большого сопротивления контура к.з. Кроме того, чувствительность теплового расцепителя не достаточно высока, чтобы сработать вместо электромагнитного расцепителя при 20-ти кратном номинальном токе. По этим причинам требуются кабели с бОльшим поперечным сечением.

Характеристика К решает эту проблему и обеспечивает безопасность эксплуатации даже при пусковых токах. Благодаря пониженному верхнему порогу электромагнитного срабатывания при 14-ти кратном номинальном токе обеспечивается быстрое срабатывание при аварии. В то же время обеспечивается хорошая защита от перегрузок благодаря низкому значению тока срабатывания – 1,2 In.

Как мы увидели, три характеристики отличаются по своим свойствам и областям применения. Характеристика С, как и В, предназначены от перегрузок по току в стандартных применениях. С другой стороны, К и D используются для защиты от повышенных токов в цепях с большими пусковыми токами, таких как:

  • электродвигатели,
  • зарядные устройства,
  • сварочные трансформаторы.

С момента разработки характеристики К на заводе АББ STOZ KONTAKT в 1928 году, она показала свою надежность для применения в условиях, описанных выше.

Рассмотрим импульсное срабатывание (рис. 16). Выбирая автоматический выключатель, следует учитывать импульсы тока менее 10мс, которые вызваны коммутацией конденсаторов и индуктивностей.

Для анализа поведения на коротких промежутках времени мы используем кривую импульсного срабатывания. Показанная зависимость коэффициент безопасности как функции длительности импульса основана на математической модели.

Чтобы узнать, при каких значениях тока сработает автоматический выключатель, следует, прежде всего оценить продолжительность пикового тока. Затем, мы используем диаграмму, чтобы определить соответствующий коэффициент безопасности.

Проиллюстрируем небольшим примером: мы используем автоматический выключатель S201 B16, производства ABB, предполагая, что длительность импульса составит 600 мкс (0,6мс).

Ток удержания равен произведению коэффициента безопасности, электромагнитного тока нерасцепления и номинального тока автоматического выключателя:

По графику получаем импульсный коэффициент 4,2. При не отключающем токе в 3 In и номинальном токе 16А, ток удержания будет 201,6А.

АНАЛИЗ СОВРЕМЕННЫХ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ

Для многоразовой защиты электрических сетей и установок от перегрузок и коротких замыканий применяются системы автоматических выключателей. В настоящее время на российском рынке представлены автоматические выключатели таких компаний, как ОАО «Контактор», ОАО «ДЗНВА», ООО «КЭАЗ»,«IEK», ООО «ТЕХЭНЕРГО», «EKF» и др. Самыми известными и крупными производителями автоматических выключателей за рубежом являются такие компании, как «GeneralElectrik»,«HAGER», «Legrand»,

«SchneiderElectric», «ABB», «Siemens» и др.

К основным техническим характеристикам автоматических выключателей относятся: номинальный ток, номинальное напряжение, время срабатывания, класс выключателя, отключающая способность. Рассмотрим каждую из характеристик более подробно[15].

Номинальное напряжение Uн,В. – напряжение переменного или постоянного тока, протекающего через автоматический выключатель, при котором нормируются его технические характеристики;

Номинальный ток выключателя Iн.а, А. – нормируемое значение тока, протекающего в длительном режиме через автоматический выключатель принормальных условиях эксплуатации. Определяется его контактами и другими проводящими частями;

Номинальный ток теплового расцепителя Iн.т, А – калиброванное значение рабочего тока, при длительном протекании которого не происходит отключения автоматического выключателя. Калиброванные значения номинального рабочего тока теплового расцепителя выбираются из стандартного ряда, но не могут превышать номинального тока выключателя;

Ток срабатывания при перегрузке Iс.п, А – ток, приводящий к срабатыванию автоматического выключателя за время, достаточного для достижения установившегося теплового состояния. В каталожных данных задаѐтся отношением Iс.n/Iн.m (1,15 1,35).

Уставка по току срабатывания в зоне токов короткого замыкания (ток срабатывания отсечки) Iс.о, А. – такое значение тока, при котором происходит практически мгновенное срабатывание автоматического выключателя с разрывом электрической цепи. Нормируется либо в единицах тока, либо как величина, кратная току теплового расцепителя Iн.т.

Для современных автоматических выключателей, выполненных в стандарте DIN, уставка по току срабатывания в зоне короткого замыкания стандартизована и определяется как характеристика мгновенного расцепления и имеет обозначение:

Читайте так же:
Выключатель автоматический трехполюсный 100а legrand

характеристика «В» — ток электромагнитного расцепителя лежит в пределах 3-5·Iн.т; характеристика «С» — то же 5-10·Iн.т;

характеристика «D» и «К» — то же 10-14·Iн.т; характеристика «L» — то же 3-4·Iн.т; характеристика «U» — то же 6-9·Iн.т; характеристика «Z» — то же 2,5-3,5·Iн.т;

Время срабатывания в зоне токов короткого замыкания tc .о, с. определяет время выдержки до разрыва электрической цепи при достижении протекающего через выключатель тока величины, равной или превышающей уставку тока электромагнитного расцепителя. Нормируется для селективных выключателей с регулируемой выдержкой времени и равно 0,1÷0,7 с. У неселективных нетокоограничивающих выключателей время срабатывания отсечки,как правило, не превышает 0,1с. и приводится в каталогах.

Предельная коммутационная способность ПКС, кА – максимальное значение тока короткого замыкания, которое выключатель способен включить и отключить несколько раз, оставаясь в исправном состоянии. Одноразовый ПКС (ОПКС) называется наибольшее значение тока, которое выключатель может отключить один раз. После этого дальнейшая работа выключателя не гарантируется.

Автоматические выключатели выбираются по параметрам нормального режима и проверяются из условия пиковых режимов и режимов коротких замыканий. Выбор выключателей рассмотрим в Табл.1[15].

Выбор автоматического выключателя

Соответствие номинального напряжения автоматического выключателя номинальному напряжению сети

где Uном.а, В – номинальное напряжение автоматического выключателя (указывается в паспортных данных);

Uном.с, В – номинальное напряжение сети.

Соответствие номинального тока автоматического выключателя расчѐтному току защищаемой цепи

где Iн.а, А– номинальный ток автоматического выключателя (принимается по каталожным данным);

Ip.max, А – максимальный рабочий ток цепи защищаемой автоматом

Тепловой расцепитель автоматического выключателя выбирают из условия отстройки от рабочих и пиковых токов электроприѐмников

где Iн.т, А – номинальный ток теплового расцепителя;

Ip.max, А – максимальный рабочий ток цепи, защищаемой автоматическим выключателем;

Kн – коэффициент надѐжности, принимаемый равным:

Kн=1 – для электрических цепей ламп накаливания и люминесцентных

ламп при защите автоматическим выключателем с тепловым расцепителем. А также цепей для люминесцентных ламп при автоматическом выключателе с комбинированным расцепителем;

Kн=1,4 – для электрических цепей ламп высокого давления (ДРЛ) при защите автоматическим выключателем с тепловым расцепителем, а также при защите цепей ламп накаливания и ламп высокого давления при защите автоматическими выключателями с комбинированным расцепителем.

Электромагнитныйрасцепитель автоматического выключателя выбирают из условий отстройки от пиковых токов электроприѐмников

где Ic.o, А – ток срабатывания электромагнитного расцепителя;

Kн.о– коэффициент надѐжности отстройки,

Kн.о = 1,05 · Кз · Ка · Кр,

где 1,05 – коэффициент, учитывающий, что в нормальном режиме напряжение может быть на 5% выше номинального напряжения электроприѐмника;

Кз – коэффициент запаса, принимается равным 1,1;

Ка – коэффициент, учитывающий наличие апериодической составляющей в пиковом токе электроприѐмника;

Кр – коэффициент, учитывающий возможный разброс тока срабатывания отсечки относительно уставки. Принимается по каталожным данным.

Эффективность защиты электрических сетей от перегрузки

Защита от перегрузок будет эффективна, если выполняются условия: Для невзрывоопасных помещений (зон):

где Iс.п, А – ток срабатывания от перегрузки;

Iд.д, А – длительно допустимая электрическая нагрузка проводников электрической сети.

Для взрывоопасных помещений (зон):

Ток срабатывания от перегрузки определяется по каталожным данным автоматических выключателей.

Соблюдение условия селективности

При выборе в качестве аппаратов защиты неселективных выключателей следует обеспечить их селективное действие хотя бы при однофазных коротких замыканиях.

Iс.о.послед ≥ Кн.о · Iк.пред,

где Iс.о.послед, А — ток срабатывания отсечки одной из двух последовательно соединѐнных защит, расположенной ближе к источнику питания

Iк.пред, А – наибольшее значение тока однофазного КЗ в конце зоны действия одной из защит, расположенной ближе к источнику питания;

При выборе в качестве аппаратов защиты селективных выключателей с регулируемой выдержкой времени срабатывания отсечки, селективность обеспечивается при выполнении условия:

где tс.о.послед,с– время срабатывания отсечки автоматического выключателя расположенного ближе к источнику питания;

tс.опред,с– время срабатывания отсечки автоматического выключателя расположенного дальше от источника питания;

∆t,с – ступень селективности, зависящая от типа селективного выключателя и принимаемая по каталогу.

В этом случае избирательность действия защит обеспечивается возрастанием времени срабатывания по цепи от конечного потребителя до ввода в электроустановку.

Причѐм ближний к потребителю автоматический выключатель должен иметь минимальное время срабатывания, т.е. быть неселективным. При

выполнении этих условий удаѐтся построить селективную защиту электрической сети во всѐм диапазоне сверхтоков.

Условие стойкости при КЗ

где ПКС – предельная коммутационная способность автомата (принимается по каталогу).

Ik.max – максимальное значение трѐхфазного тока при КЗ в месте установки автомата.

Читайте так же:
Кратность токовой отсечки автоматических выключателей

Допускается поверять автоматический выключатель по значению тока одноразовой предельной коммутационной способности (ОПКС), а также устанавливать нестойкие при КЗ выключатели или группы выключателей, если они защищены расположенными ближе к источнику питания стойкими при К.З. выключателем, обеспечивающем мгновенное отключение всех КЗ с током, равным или большим тока ОПКС, указанных нестойких выключателей.

Большинство современных автоматических выключателей – комбинированные. Они имеют электромагнитный и тепловой расцепитель и могут одновременно защищать и от перегрузок сети, и от коротких замыканий. Монтируются выключатели на 35 мм DIN-рейку, поэтому их ещѐ часто называют модульными.

В настоящее время легко найти изделия на токи 6-63А, с характеристикой В,C,D, с отключающей способностью от 4,5 кА до 6 кА, с количеством полюсов 1-4, износостойкостью 20000 срабатывания, наработкой 6000-10000 часов.

Самым популярным и распространѐнным типом автоматических выключателей является класс С. Данный класс автоматов применяется как для бытового назначения, так и для промышленных целей для осветительных сетей, двигателей и трансформаторов. Наиболее распространѐнные автоматические выключатели класса С представлены в Табл.2.

Рассмотрим и проанализируем данные Табл.2.. Цена на современные однополюсные автоматические выключатели российского производства колеблется от 44 до 215 руб. Цена на выключатели зарубежного производства колеблется от 60 до 395 руб. Если сравнить выключатели отечественного производителя между собой, то самыми выгодными решениями будут выключатели компаний EKF, IEK и ООО «КЭАЗ». Выключатели компаний «ТЕХЭНЕРГО»,

Таблица 2 Технические характеристики однополюсных автоматических выключателей на номинальный ток 63 А

Проверка автоматических выключателей

Чтобы автоматический выключатель защищал от поражения электрическим током, он должен обеспечивать отключение от питания участка электрической цепи, который зависит от тока одофазного замыкания.

Перед проверкой автоматических выключателей часто задаются следующие вопросы:
  1. Сколько автоматических выключателей необходимо испытывать?
  2. Требуется ли проведение проверки в ходе эксплуатационных испытаний?
  3. Требуется ли периодически повторное проведение проверок?
  4. Испытания проводятся в лаборатории или у заказчика?
  5. Что делать, если оборудование проверку не прошло?
  6. Требуются ли резервные автоматические выключатели?
Проверка работы расцепителей автоматических выключателей

После срабатывания одного из расцепителей автоматически выключатель выполняет свою функцию — отключает питание определенного участка цепи. Расцепители по типу могут быть тепловыми или электромагнитными, но в современном оборудовании чаще всего используют оба типа для наиболее надежной защиты. Автоматы с одним типом расцепителей имеют гораздо более узкую сферу применения.

Автоматы с тепловыми расцепителями обеспечивают защиту электросети от перегрузки линии. Такой расцепитель представляет собой двухслойную биметаллическую пластинку. Когда возникает перегрузка, этот элемент выключателя нагревается. Под воздействием температуры происходит деформация пластины, что и приводит к расцеплению.

Электромагнитные расцепители нужны для защиты линии от разрушительного воздействия тока КЗ. Этот элемент прибора представляет собой соленоид с подвижным сердечником. Механизм расцепления приводится в действие сердечником, который втягивается магнитным полем, созданным под воздействием токов КЗ.

В свою очередь электромагнитные расцепители подразделяются на типы в зависимости от временных и токовых характеристик, то есть от того, за какое время и токи какой силы приводят выключатель в действие. Обозначаются типы электромагнитных расцепителей заглавными латинскими буквами. К наиболее распространенным относятся типы, соответствующие буквам B, C, D.

  • B — в диапазоне от 3-кратного до 5-кратного номинального тока;
  • С — в диапазоне 5-10-кратного номинального тока;
  • D — 10-20-кратного номинального тока.

При низких пусковых токах в системе допустимо использовать автоматы с расцепителями типа B. В этой же сети целесообразно установить входной автомат с характеристиками C. Эти же устройства допустимо устанавливать в сети с умеренными пусковыми токами. Для защиты линии с высокими пусковыми токами подходят автоматы типа D.

ГОСТ Р 50345-2010 «Аппаратура малогабаритная электрическая. Автоматические выключатели для защиты от сверхтоков бытового и аналогичного назначения» регламентирует, как и какие именно автоматы нужно испытывать.

Таблица 7. Время-токовые рабочие характеристики

Автоматические-выключатели.jpg

Термин «холодное состояние» означает, что при контрольной температуре калибровки ток предварительно не пропускают.
Примечание — Для выключателей типа D рассматривается возможность дополнительного испытания для промежуточного значения между c и d. a, b и c — это испытания тепловой защиты, а d и e — соответственно, защиты от короткого замыкания (КЗ).

Как проверяется срабатывание автоматических выключателей?

Специалисты нашей лаборатории для выполнения испытаний используют специальное оборудование: аппарат «Синус-». Этот прибор весит 22 кг и внешне напоминает системный блок ПК. Аппарат позволяет успешно провести испытания расцепителей электромагнитного типа, полупроводниковых и тепловых при условии, что In попадает в диапазон от 16 до 320 А.

  1. Сначала на неразогретый прибор подается ток, который превышает номинальный в 1,13 раз. Расцепитель теплового типа не должен срабатывать на протяжении 1 часа номинальный ток меньше 63 А, и минимум в течение 2 часов при значении номинального тока выше 63 А.
  2. Сразу посл завершения первого этапа на оборудование подают ток, который превышает номинальное значение в 1,45 раза. Расцепитель должен сработать в течение часа при In<63 А, или в течение 2 часов при In>63 А.
  3. После завершения второго этапа с выключателя снимается напряжение, ему дают вернуться в первоначальное «холодное» состояние. Далее на прибор подается ток, больше In в 2,55 раза. Если In<32 А, то сработать тепловой расцепитель должен за 1 минуты, при In>32 А расцепление должно произойти за 2 минуты.
Читайте так же:
Врезной выключатель с датчиком движения

Для проведения всех этапов испытания достаточно включить аппарат «Синус» и установить требуемое значение тока в Амперах. После этого автоматически включается таймер, который отключается после расцепления.

  1. На «холодный» автомат подается ток в 3, 5 или 10 А в зависимости от его типа (B, C, D – соответственно). Мгновенный расцепитель должен вызвать отключение за 0,1 секунду или более.
  2. Автомат возвращается в холодной состояние, а затем на него подается ток 5, 10 или 20 А, также в зависимости от типа расцепителя. Сработать устройство должно менее, чем за 0,1 секунды.

При выполнении испытания ток, который подается на прибор, возрастает от минимального значения до верхней границы. Происходит это практически мгновенно. Во время срабатывания расцепителя фиксируется величина тока в этот момент и время, которое прошло с достижения током необходимого значения.

Сколько автоматических выключателей требуется проверить?

Заказчик сам может решать, где проводить испытания — в лабораторных условиях или непосредственно на объекте. В последнем случае присутствие специалистов лаборатории на объекте может быть достаточно длительным, но это вполне выполнимо, если вы обратитесь в нашу лабораторию. Наши специалисты проведут на объекте столько времени, сколько потребуется.

Если объект еще не эксплуатируется, то проверка в лаборатории будет значительно проще и удобней. Но если объект введен в эксплуатацию, то потребуется замена проверяемых автоматов резервными. В этом случае заказчику потребуется заранее подготовить их а необходимом количестве. Резервные выключатели будут установлены на место проверяемых, чтобы электроустановка продолжала работать во время выполнения испытаний.

Если же заказчик не считает целесообразным приобретать большое количество резервного оборудования, то проводить испытание придется в нерабочие часы — вечером и ночью, а также в выходные дни. В этом случае потребителю не придется испытывать неудобства от отключения сети. Заказчики могут выбрать вариант проведения испытаний, которые предложат наши специалисты. Окончательное решение всегда остается за ответственным лицом: инженером по технической безопасности или владельцем.

Необходимость эксплуатационной проверки и прогрузки автоматов

Специалисты все же рекомендую время от времени проводит проверку исправности автоматов. Это объясняется тем, что любой прибор со временем изнашивается и может выйти из строя. Чтобы убедиться в том, что автоматы выполняют свою защитную функцию, стоит установить определенную периодичность, с которой будут проводится эксплуатационные испытания.

Для установления периодичности лучше всего опираться на рекомендации производителя приборов. Как правило, приборы европейского производства можно проверять относительно редко. А вот если в системе установлены автоматы, изготовленные в Китае или на отечественном заводе, то рекомендуется проводить проверки чаще. В любом случае окончательное решение остается за заказчиком.

Результаты проверки автоматических выключателей
  • при токе несрабатывания происходит расцепление;
  • при токе срабатывания расцепление не происходит;
  • автомат срабатывает, но этот момент не вписывает в допустимый интервал времени срабатывания.

Если в ходе испытаний был выявлен хотя бы один выключатель, который подлежит замене, то по требованиям ПУЭ необходимо дополнительно проверить такое же количество приборов, которое было отправлено на первичную проверку.

Чаще всего выявление неисправных выключателей происходит при эксплуатационных испытаниях. Если проверка осуществляется в рамках передачи объекта в эксплуатацию, то вероятность обнаружения неисправности значительно ниже. Использование надежного оборудования и строгое соблюдение регламента испытаний позволяет нам выявить дефектные выключатели с высокой точностью. Это позволяет максимально защитить электросеть, объект и людей, которые проживают на нем, работают или посещают его. И хотя замена выключателя может быть достаточно затратной, повышение безопасности этого стоит.

Случается, что из-за короткого замыкания происходит поломка другого оборудования сети: вентиляционного или промышленного. В результате затраты становятся еще больше, поэтому вклад средств в испытания и замену выявленных неисправных автоматов можно рассматривать как экономию в долгосрочной перспективе.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector