Gutdver.ru

Отделка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ

ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ

драйверы для светодиодов cree

Простые драйверы для светодиодов имеют лишь одно достоинство — низкая себестоимость. Что касается параметров стабилизации, то здесь ток и напряжение выхода может гулять в широких пределах, а по сложности настройки такие схемы не уступают и стабилизаторам на констроллерах. К тому же мощность такого преобразователя будет достаточной максимум для питания 3-х обычных пятимиллиметровых светодиодов (около 50мА) что конечно мало.

драйверы для мощных светодиодов

Драйверы на специализированных микросхемах не так капризны в работе, не требовательны к номиналам деталей и позволяют отдавать в нагрузку токи в несколько ампер. Это при том, что габариты такого драйвера те-же самые, что и в транзисторных. Чаще всего используются ZSCT1555D8, ZRC250F01TA, ZLLS2000TA, ZTX651, FZT653 и другие.

Размеры плат драйверов лед

Единственная проблема — высокая цена самих микросхем и часто отсутствие их в продаже. Поэтому представляется вполне логичным покупка готового драйвера на радиорынке или интернет-магазинах. Самое удивительное — цена отдельно микросхемы будет выше, чем цена всего готового устройства! Например недавно заказал из китая несколько миниатюрных преобразователей для светодиодов всего по 2 доллара.

Эксперименты с питанием светодиодных преобразователей

Первый драйвер предназначен для работы со входным напряжением 2,4-4,5В и обеспечивает на выходе стабильный ток 1А при напряжении 3В. Такой драйвер идеально подходит для питания 5-ти ваттного светодиода от двух пальчиковых батареек или литий-ионного аккумулятора. Любой фонарь с обычной лампой накаливания за пол-часа переделывается в мощный LED фонарь с высочайшей яркостью.

Драйвер на 3в

Второй драйвер расчитан на подключение на выход аналогичного светодиода, только входное напряжение варьируется в более широких преелах: 5-18В. Ниже приводятся вольт-амперные параметры драйвера при подключенном светодиоде потребляющим ток 1А.

Драйвер на 12в

Питание схемы от 5В

Питание схемы от 15в

Как видно по фотографиям, питая драйвер от 5-ти вольт, ток составляет около 0,8А. А подавая на преобразователь максимальные 16 вольт, ток падает до 0,3А. Потребляемая от батареи мощность будет в обеих случаях одинакова. Поэтому данный драйвер можно рекомендовать для использования в автомобилях в светодиодной подсветке салона или тюнинга разноцветными LED элементами.

Сравнение размеров с светодиодной лампой

Отдельной группой стоят мощные LED драйверы, специально предназначенные для питания мощных и сверхмощных светодиодов от сети, но об этом будет рассказано в следующих материалах.

Форум по обсуждению материала ДРАЙВЕР ДЛЯ СВЕТОДИОДОВ

Что означают термины переключатель, тумблер и кнопка — в чём главные различия и особенности применения каждого из них.

Несколько методов точного измерения емкости конденсаторов. Теория и практика.

Схема гитарного комбо-усилителя с блоком эффектов на базе микросхем TDA2052, PT2399 и TL072.

Драйвер (электроника)

Драйвер (англ.  driver  — управляющее устройство, водитель) — электронное устройство, предназначенное для преобразования электрических сигналов, целью которого является управление чем-либо. Драйвером обычно называется отдельное устройство или отдельный модуль, микросхема в устройстве, обеспечивающие преобразование электрических управляющих сигналов в электрические или другие воздействия, пригодные для непосредственного управления исполнительными или сигнальными элементами.

Под определение драйвера попадают многочисленные устройства:

  • Шинные формирователи, предназначенные для передачи сигналов с одного уровня цифрового устройства на другой с преобразованием уровня, усилением нагрузочной способности и другими особенностями. Такие устройства обеспечивают передачу данных между различными логическими блоками по общим линиям связи внутри вычислительных машин.
  • Формирователи сигналов интерфейсов цифровых электронных устройств, предназначенные для преобразования, приёма и передачи цифровых сигналов и согласования электрических параметров с особенностями линии связи. Наиболее известными представителями таких драйверов считаются формирователи интерфейсов RS-232 (COM — порт), RS-485, RS-422, CAN, LIN, Ethernet, USB, IEEE 1394 и т. д.
  • Устройства управления различными типами исполнительных устройств, такими как электромагниты, электродвигатели (в том числе шаговые), сигнальные лампы, дозаторы (в том числе печатающие головки принтеров), сервоприводы, звуковые сигналы и т. д. [1]
  • Модули питания и управления устройствами, требующими соблюдения определённых рабочих параметров в процессе включения, выключения и работы. Ярким примером можно считать драйверы светодиодов, поскольку к питанию светодиодных устройств предъявляются повышенные требования [2] .
  • Драйверы силовых транзисторов, MOSFET и IGBT-транзисторов. Затворы мощных полевых силовых транзисторов имеют большую электрическую ёмкость (тысячи пикофарад), для зарядки которых на высокой частоте нужен большой ток (амперы). Драйвер обеспечивает большой ток для быстрой зарядки затвора транзистора для его открытия. А также быстро разряжает затвор, когда транзистор нужно закрыть.
Читайте так же:
Индикация или подсветка выключателей

Содержание

Драйверы светодиодов [ править | править код ]

Светодиоды, в отличие от других излучающих свет приборов (ламп, светильников), не могут быть напрямую включены в бытовую сеть. Более того, светодиоды не могут питаться фиксированным напряжением, которое указано в паспорте. Устройство питания светодиода должно иметь элементы, ограничивающие ток через светодиод в соответствии с его характеристиками, или балласт. Именно поэтому диод называется «токовым прибором», и использование традиционных преобразователей напряжения неприменимо. Светодиод, как и любой полупроводниковый диод, имеет нелинейную вольт-амперную характеристику, которая меняется под воздействием температуры и, хоть и незначительно, но отличается у разных излучателей, даже выпущенных в одной партии. Поэтому ограничивающие ток элементы должны учитывать как разброс параметров светодиодов, температурный и временной уход, так и изменения питающего напряжения.

Известно множество схем питания светодиодов. Наиболее простым решением для ограничения тока светодиода является резистор, включённый последовательно с светодиодом, однако, такой вариант не слишком экономичен. Немалая часть подводимой мощности будет выделяться на этом резисторе в виде тепла. Можно уменьшить эту «паразитную» мощность снижением напряжения питания системы и уменьшением сопротивления резистора. Чем меньше выбрать сопротивление резистора, тем меньше он будет греться. Но и тем больше будет меняться ток светодиода при изменении его параметров, вызванных например, изменениями температуры, а при слишком малом сопротивлении резистора, ток может выйти из рабочего диапазона и снизить долговечность светодиода вплоть до выхода его из строя.

Наиболее популярные на данный момент эффективные схемы питания — на основе импульсных преобразователей (электронный балласт) и на основе реактивного сопротивления ёмкостных элементов (ёмкостной балласт).

Другой способ питания — стабилизация тока через светодиод с помощью электронной схемы. Для таких целей выпускаются специальные микросхемы, содержащие один или несколько стабилизирующих ток выходов. При использовании такого решения, напряжение питания может быть подобрано таким, что выделяемая на драйвере активная мощность была минимальной. Драйверы со стабилизацией тока и с управлением от микроконтроллера используются в электронных светодиодных табло, где требуется управлять не только включением, выключением и яркостью каждого пикселя, но и его цветом [3] .

В некоторых применениях, например батарейном питании, напряжения источника не хватает для включения светодиода. В таких устройствах используются повышающие преобразователи, специально разработанные для эффективного использования светодиодных излучателей [4] .

Читайте так же:
Выключатель с подсветкой для приборов

Для питания мощных белых светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы светодиодов, представляющие собой эффективные преобразователи питания, которые стабилизируют не напряжение на своём выходе, а ток [5] [6] .

Такие драйверы позволяют включить один или несколько светодиодов, соединённых в одну последовательную цепочку. Несколько параллельных цепочек таким драйвером питаться не могут, поскольку ток в отдельных цепочках может сильно отличаться [2] .

Драйверы исполнительных устройств [ править | править код ]

В современной автоматике, да и в бытовой технике, зачастую двигатель или электромагнит включается не выключателем, а контроллером. Скоростью вращения, направлением позволяют управлять логические устройства с формирователями на выходе — силовыми драйверами [7] . Входы такого драйвера совместимы с логическим устройством, а на выходе формируется необходимое напряжение нужной полярности и, в случае шагового двигателя, необходимая циклограмма возбуждения его обмоток.

LED-драйверы

Блок питания для светодиодов может использоваться в широком диапазоне рабочих температур от -40оС до +50оС. А благодаря встроенному корректору коэффициента мощности устройство обеспечивает качественное потребление электроэнергии.

Многие производители оснащают устройства питания светодиодов регулятором выходного тока, благодаря которому можно световой поток светодиодов. В случае короткого замыкания сработает специальная защита, однако когда причина аварии будет устранена, устройство автоматически продолжит работать в нормальном режиме. .

Срок службы LED драйверов может достигать 15 лет, а гарантийный срок составляет 24 месяца. В нашей компании вы можете купить блоки питания для обычных и мощных светодиодов, а также любые драйверы для светодиодов по наиболее выгодной цене. Если при заказе их не окажется на складе, устройства будут изготовлены в течение месяца.

Драйверы для светодиодов

Если вы желаете купить блок питания светодиодов, важно знать, что независимо от величины потребляемого тока, он будет стабилизировать напряжение. В таком устройстве должен быть резистор, который защитит светодиод от повышенного напряжения и перегорания.

LED драйверы для светодиодов могут иметь алюминиевые или пластиковые корпуса, в которых проделаны отверстия, используемые для винтового крепления. Эти светодиодные компоненты можно использовать в любом рабочем положении: вертикальном и горизонтальном. Степень защиты IP66 сообщит, что изделия защищены от повышенной влажности и пыли, поэтому их можно использовать как внутри помещения, так и для наружного светодиодного освещения.

LED драйверы для светодиодных светильников и их особенности

Светодиодное освещение офисов, производственных и жилых помещений считается самым современным. Благодаря освещению светодиодными светильниками, расход электроэнергии сокращается к минимуму, а сами источники света служат долгие годы, не требуя замены. В то же время светодиодам требуются LED драйверы, которые бы стали качественным источником питания. Современный рынок предлагает множество аварийных блоков питания для светодиодных светильников, позволяющих стабилизировать напряжение.При их выборе необходимо знать, что напряжение светодиода должно быть на 5% меньше номинального, поскольку в случае его повышения кристалл может перегреться, а светодиод перегореть. При повышении температуры на 10 градусов срок службы прибора освещения сокращается вдвое.

Маркировка моделей драйверов светодиодов

Обозначения моделей светодиодных LED драйверов

Драйверы для питания светодиодов выпускаются в таких сериях:

  • А220Т_С_К02 – 60 Вт;
  • А220Т_С_К03 – 100 Вт;
  • А220Т_С_Н07 – 40, 45 Вт;
  • А220Т_С_К08 – 18 Вт.

По желанию заказчика возможно добавление функции регулировки выходного тока (исполнение Р07). Предусмотрена защита от короткого замыкания по выходу: после снятия к.з. источник автоматически восстанавливает свои параметры. Имеется тепловая защита драйвера мощного светодиода с автоматическим возвратом.

  • Электрическая прочность изоляции — 1500 В (действующее) частотой 50 Гц между выводами «Вход» и «Выход», так же между выводом «Вход» и корпусом.
  • Срок службы 15 лет;
  • Гарантийный срок – 24 месяца;
  • Срок изготовления драйверов и блоков питания светодиодов при отсутствии их на складе – 30 рабочих дней.
Читайте так же:
Как выбрать электрический кабель по току

Цены на Led-драйверы

СерияМощность, ВтЦена, руб.
А220Н125С012К08
А220Н065С024К08
15398,4
А220Н300С012К07
А220Н150С024К07
36450
А220Н800С012К03
А220Н400С024К03
1001363,2
А220Т015С140Т08
А220Т030С070Т08
А220Т035С060Т08
А220Т070С030Т08
20-21381,6
А220Т015С140Н08
А220Т035С060Н08
А220Т045С048Н08
А220Т070С030Н08
20-21393,6
А220Т035С060Е07
для аварийных светильников
21710,4
А220Т030С120Т07
А220Т035С106Т07
А220Т070С052Т07
36-37478,8

Питание светодиодных линеек: каким оно должно быть

Современные светодиодные ленты могут иметь напряжение 12 или 24 вольта. Их мощность может находиться в диапазоне от 30 до 400 ватт. С помощью стабилизирующих источников питания мощностью от 18 до 100 Вт можно обеспечить работу светодиодных линеек, отдельных светодиодов и иных изделий РЭА, использующих в качестве источника питания сеть 220 В. Также питание светодиодных линеек имеет тепловую защиту с автоматическим возвратом.

Выбирая светодиодный светильник, важно уделить должное внимание приобретению подходящего блока питания, особенности которого следует учитывать при разработке системы LED освещения. Правильный выбор LED драйвера станет залогом долгой и успешной службы светодиодов и светильника.

Светодиодные драйверы производства фирмы SiTI

Компания была основана в декабре 1996 года, находится в Тайване. Линейка продукции SiTI включает в себя драйверы электро- и шаговых двигателей, супервизоры электропитания, приемопередатчики оптоволоконных линий. Однако 47% объема выпуска приходится на микросхемы управления светодиодами, двухцветными и полноцветными светодиодными матрицами и модулями.

Продукцию фирмы SiTI используют многие ведущие изготовители видеоэкранов (Barco, Daktronics, Tecnovision, Optotech, российская фирма АТВ и др.).

К основным особенностям LED-драйверов производства SiTI можно отнести:

  • возможность подстройки тока для каждого светодиода;
  • ШИМ-регулировку уровня серого (общего уровня яркости);
  • широкий диапазон напряжения питания;
  • встроенные схемы защиты от перегрева и обнаружения обрыва/замыкания в светодиодах;
  • возможность изготовления в корпусах QFP и QFN.

Основная область использования этих микросхем — светодиодные экраны наружного и внутреннего применения, «бегущие строки», светодиодная реклама и другие устройства отображения информации.

На рис. 1 и 2 можно видеть, что разработчики SiTI продвигаются к созданию микросхемы «все в одном» для построения полноцветного светодиодного экрана. Сейчас фирма имеет бесспорное преимущество в области изготовления драйверов с широтно-импульсной модуляцией для светодиодов.

План развития SiTI по светодиодным драйверам

План развития SITI по источникам питания

Драйверы первого поколения, к которым относятся ST2221A (снята с производства в 2006 году), DM114, DM115, имеют много функциональных аналогов: TOSHIBA (TB62706, TB62705), ALLEGRO (A6275EA, A6276EA), MACROBLOCK (MBI5001, MBI5016). Устройство их достаточно простое — 8-битный последовательный регистр с защелкой и генераторами постоянного тока в каждом канале. Эти драйверы не дают возможности устанавливать выходной ток для каждого канала в отдельности.

Микросхемы DM114 и DM115 (максимальный ток на канал 90 и 60 мА соответственно) — это модернизированные ST2221A. Добавлены следующие функциональные возможности:

    расширенное напряжение питания логической части 3,3

Также к драйверам первого поколения относится микросхема ST2225A. Это 35-канальный драйвер, разработанный для управления 7-сегментными индикаторами.

Читайте так же:
Кабель для 10 квт сечение провода

Продолжением линейки драйверов первого поколения стала микросхема DM11C — усовершенствованный 8-канальный драйвер с максимальным током на один канал 120 мА. В этот драйвер встроена схема обнаружения обрыва/пробоя светодиодов и защита от перегрева. Благодаря своей низкой цене, широким функциональным возможностям, наличию большого количества корпусов и несложному алгоритму работы, эта микросхема пользуется большим спросом среди изготовителей светодиодных индикаторных устройств. В таблице приведены сравнительные параметры драйверов.

Сравнительные параметры драйверов

Микросхема второго поколения ST2226A и ее обновленная версия DM132 имеют дополнительные возможности благодаря встроенной схеме ШИМ.

Диапазон питающих напряжений расширен до 3–5 В, а выходных напряжений — до 1,25–17 В. При выходном токе в диапазоне 5–60 мА обеспечивается разность величины тока в пределах ±4% в одной микросхеме и ±7% в разных. Микросхема выпускается в корпусах DIP28, SOP28, SSOP28 и QFN32. Основное применение — видеоэкраны.

В состав микросхемы входят регистры сдвига с защелками, 16-канальный драйвер постоянного тока с установкой величины тока внешним резистором, устройство 1024-ступенчатого управления уровнем яркости и схема временного разделения каналов.

Несомненное преимущество — возможность управления постоянным током, протекающим через светодиод, по каждому пикселю индивидуально — в отличие от драйверов первого поколения, где регулировка возможна только по всем каналам микросхемы вместе.

Рассказывая о микросхемах с ШИМ, нельзя не упомянуть унифицированный драйвер DM413, который может работать как в режиме 3-канального драйвера, так и в режиме генератора ШИМ для управления токовыми ключами. К его особенностям можно отнести:

  • 8-битный режим регулировки выходного тока по каждому каналу с помощью ШИМ;
  • 8-битный режим регулировки выходного тока по каждому каналу и 6-битный общей регулировки яркости;
  • 8-битный режим регулировки выходного тока по каждому каналу и 5-битный коррекции цвета;
  • максимальный выходной ток: 100 мА;
  • регулировка выходного тока ШИМ с помощью встроенного генератора

Микросхема выпускается в корпусах SOP16 и SSOP16.

Примерная схема включения показана на рис. 3.

Схема включения DM413

В 2005 году выпущена еще более усовершенствованная микросхема для использования в полноцветных светодиодных видеоэкранах — DM163. В нее входят 3 блока RGB по 8 каналов в каждом. Яркость одного канала задается 8-битным двоичным кодом. Также предусмотрена 6-битная регулировка яркости для каждого канала. Предельный ток канала — 60 мА при максимальном рабочем напряжении до 17 вольт, с возможностью регулировки тока по каждому каналу в отдельности с 1024 уровнями градации. Микросхема выпускается в корпусах QFP44 и QFN40. Малые размеры корпуса позволяют без проблем расположить драйвер рядом со светодиодами, что поможет увеличить помехоустойчивость схемы. В 2007 году SiTI начала серийно выпускать обновленную версию DM164 — это уже 16-битная микросхема.

Новейшая разработка SiTI в области управления светодиодами с помощью ШИМ — светодиодный драйвер DM634, разработанный в 2007 году. Это 16-канальный светодиодный драйвер с программируемыми выходами. Основные особенности и преимущества микросхемы:

  • максимальный выходной ток 90 мА;
  • максимальное выходное напряжение 17 В;
  • 16-битная ШИМ на каждый канал;
  • 7-битный общий контроль яркости;
  • максимальная тактовая частота 25 МГц;
  • обнаружение обрыва/пробоя светодиода в режиме реального времени;
  • встроенная защита от перегрева.

Драйверы первого поколения стоят сейчас примерно 5–6 центов за канал, а драйверы с ШИМ — 8–10 центов. При сравнении необходимо учесть высокую степень интеграции драйверов с ШИМ, применение которых требует меньше дополнительных навесных элементов. Можно представить себе, насколько упрощается работа схемотехника по созданию конструкции: ведь фактически основная часть проекта выполняется программными средствами. Облегчается и процесс настройки цветового баланса по пикселям, матрицам и всего экрана в сборе.

Источники тока

В последнее время появились светодиоды с кристаллами, работающие при больших токах — более одного ампера. Несомненно, что не всегда нужно использовать такие светодиоды с максимальной силой света. Возникает вопрос об управлении величиной тока для питания мощных светодиодов. Сейчас серийно выпускается микросхема DD311. Это одноканальный светодиодный драйвер, в состав которого входят токовое зеркало и выключатель, разработанный специально для управления мощными светодиодами типа HPL, Dorado, XLamps. Он может обеспечить максимальный выходной ток 1 A, управляемый токовым выводом. Величина выходного тока, установленного внешним резистором, в 100 раз больше управляющего тока. Максимальное рабочее напряжение 33 В может обеспечить питание большого количества мощных светодиодов, включенных последовательно. Вход Enable позволяет включать и выключать светодиоды, а также регулировать их яркость подачей ШИМ-управления на этот вывод.

  • максимальный выходной ток: 1 A (регулируется величиной управляющего тока);
  • минимальное напряжение на выводе Out: 1 В (Iout = 1 A);
  • максимальное напряжение на выводе Out: 36 В (при токе утечки <0,1 мкA);
  • максимальная частота сигнала на выводе Enable: 1 MГц;
  • корпус ТО-252.

Возможные схемы включения показаны на рис. 4–6.

Типовые схемы включения DD311

DD311 с параллельным включением светодиодов

DD311 со смешанным включением светодиодов

Драйвер DD311 специально разработан для работы с высокой частотой переключения — до 1 MГц. Подавая на вывод Enable управляющий ШИМ-сигнал, можно управлять яркостью светодиодов. Особый интерес представляет совместная работа DD311 и микросхемы DM413, являющейся в данном случае формирователем ШИМ-управления, типовая схема включения DD311 и DM413 показана на рис. 7. DM413 формирует 14-битный RGB-сигнал, позволяющий управлять набором из трех драйверов DD311. Комбинация DD311 и DM413 — это идеальное решение по управлению яркостью и цветом большого количества светодиодов.

Схема включения DD311 и DM413

Микросхема DD312 тоже выпускается серийно. Это версия DD311 с пониженным напряжением питания. Микросхема выпускается в корпусах TO-252 и SOP-8. Предусмотрена защита от теплового перегрева корпуса, а в версии SOP-8 есть сигнализация превышения температуры и контроль обрыва/пробоя светодиода.

DD313 представляет особый интерес для разработчиков, создающих электронные устройства светодиодной рекламы. Микросхема выпускается в корпусах SOP-16 и TSSOP-16, в ней три канала с током 500 мА по каждому и предельное напряжение до 17 В. При подаче сигнала ШИМ можно управлять током в каждом канале отдельно. Пример схемы включения DD313 показан на рис. 8.

Схема включения DD313

Последняя разработка SiTI в области управления мощными светодиодами — микросхема DD331. Это 4-канальный драйвер, выходы которого совместимы с входами n-MOSFET транзисторов. Выходной ток микросхемы ограничивается внешними резисторами для каждого канала отдельно. DD331 выпускается в корпусах SOP-16, SSOP-16 и QFN-16. Примерная схема включения DD331 изображена на рис. 9.

Схема включения DD331

Тайваньская фирма SiTI непрерывно развивается и с каждым годом расширяет ассортимент продукции, отвечающей самым высоким требованиям разработчиков «бегущих строк», светодиодных экранов и прочих устройств отображения информации.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector