Gutdver.ru

Отделка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Источники питания

Источники питания

Справочник электронных ламп

Для усилителя звуковой частоты, источник питания, является чуть-ли не самой важной компонентной составляющей. Именно он, играет главную партию первой скрипки во всём наборе составляющих Вашего усилителя. Дело в том, что именно от правильной схемотехники блока питания, от правильно рассчитанных и собранных фильтров, в конечном счете зависит прозрачность, глубина и мягкость (иногда говорят — бархатность) звука.
Достаточный запас мощности и, как можно минимальное внутреннее сопротивление источника питания на высоких звуковых частотах, помогают в значительной степени качественно улучшить характеристики усилителя звуковых частот.
Современная ламповая схемотехника допускает использование, как полупроводниковые, так и ламповые схемы выпрямления переменного тока. Долгие годы начиная с 90х, не прекращались споры о том, можно или нельзя использовать полупроводниковые диоды и мосты в качестве выпрямительных элементов для источников питания усилителей класса Hi-End.
Исходя из личного опыта и опираясь на результаты экспертных оценок качества звучания, были сделаны следующие выводы:
— отличить звук усилителя с кенотронным ламповым блоком питания от полупроводникового практически невозможно;
— существует мнение, что некоторые эксперты с профессиональным музыкальным слухом, способны распознать тип источника питания, но подобные оценки имеют очень высокую погрешность;
— в среде любителей лампового звука, существует негласный закон – «Если усилитель класса Hi-End, или как говорили в старые добрые времена – усилитель высшего класса, то блок питания должен быть выполнен на ламповых диодах (кенотронах).

Схемотехника выпрямителей питающего напряжения на полупроводниках.

На рисунке 1, приведена схема однополупериодного выпрямителя на полупроводниковом диоде с емкостной нагрузкой.

Cхема однополупериодного выпрямителя на полупроводниковом диоде

Рис. 1. Cхема однополупериодного выпрямителя на полупроводниковом диоде

U2 = 1,1Uн; I2 = 2Iн U3 = 3,1Uн; Imax = 7Iн C1 = 500Iн/Uн

На рисунке 2, приведена схема двухполупериодного выпрямителя на двух полупроводниковых диодах с емкостной нагрузкой. При такой схемотехнике силовой трансформатор должен иметь две абсолютно одинаковые повышающие обмотки, что не всегда удобно по ценовым и конструктивным соображениям.

Схема двухполупериодного выпрямителя на двух полупроводниковых диодах с емкостной нагрузкой

Рис. 2. Схема двухполупериодного выпрямителя на двух полупроводниковых диодах с емкостной нагрузкой

U2 = Uн; I2 = Iн U3 = 3,1Uн; Imax = 3,5Iн C1 = 250Iн/Uн

На рисунке 3, приведена схема двухполупериодного мостового выпрямителя на четырех полупроводниковых диодах с емкостной нагрузкой. При такой схемотехнике силовой трансформатор должен иметь одну повышающую обмотку, что позволяет удешевить конструкцию и за счет мостового включения эффективно использовать прямой и обратный полупериоды с одной обмотки.

Схема двухполупериодного мостового выпрямителя на четырех полупроводниковых диодах

Рис. 3. Схема двухполупериодного мостового выпрямителя на четырех полупроводниковых диодах

U2 = Uн; I2 = 1,5Iн U3 = 1,6Uн; Imax = 3,5Iн C1 = 250Iн/Uн;

На рисунке 4, приведена схема двухполупериодного диодно-емкостного удвоителя напряжения.

Схема двухполупериодного диодно-емкостного удвоителя напряжения

Рис. 4. Схема двухполупериодного диодно-емкостного удвоителя напряжения

U2 = 0,7Uн; I2 = 3Iн U3 = 1,6Uн; Imax = 7Iн C1 = 1000Iн/Uн;

На рисунке 5, приведена схема диодно-емкостного умножителя напряжения. Коэффициент умножения k зависит от количества используемых умножительных блоков. Умножительный блок это последовательно соединенные конденсатор и диод. В приведенной схеме шесть умножительных блоков.

Схема диодно-емкостного умножителя напряжения

Рис. 5. Схема диодно-емкостного умножителя напряжения

U2 = 0,8Uн/k; U3 = 2,8U2; C1 = C2 = Cn = 600Iн/Uн;

Все напряжения в приведенных формулах измеряются в вольтах (в), все токи в милиамперах (мА), а все ёмкости в микрофарадах(мкФ). При указанных коэффициентах расчетов емкости, выпрямители обеспечивают коэффициент пульсаций до 1%. Для получения более низких значений коэффициента пульсаций необходимо применять фильтры питания.

Схемотехника выпрямителей питающего напряжения на лампах.

На рисунке 6, приведена схема двухполупериодного выпрямителя на ламповом двуханодном диоде (кенотроне). Эта схема, по своим характеристикам, аналогична полупроводниковой схеме выпрямления, изображенной на рисунке 2.

Схема двухполупериодного выпрямителя на ламповом двуханодном диоде

Рис. 6. Схема двухполупериодного выпрямителя на ламповом двуханодном диоде

U2 = Uн; I2 = Iн U3 = 3,1Uн; Imax = 3,5Iн C1 = 250Iн/Uн

Для всех схем питания одинаково справедливо следующее положение, — чем больше емкость конденсатора, тем больше и его заряд и, следовательно, тем дольше он сможет поддерживать ток в нагрузке. Если емкость конденсатора достаточно велика, то он не успевает разрядится до нуля за время промежутков полупериодов переменного тока, и поэтому ток в нагрузке не прекратится, а лишь уменьшится. Если бы емкость конденсатора была бесконечно велика, то конденсатор вообще не успевал бы разрядиться и напряжение на нагрузке оставалось постоянным. Поэтому на практике всегда стремятся сколь возможно увеличить емкость конденсатора фильтра. Но значение емкости конденсаторов конечно. Дальнейшее сглаживание пульсаций переменного тока осуществляется при помощи фильтров питания.

Схемотехника фильтров питания.

В каждом выпрямителе, предназначенном для питания анодных цепей каскадов лампового усилителя, обязательно должен быть сглаживающий фильтр, который значительно уменьшает пульсации тока после выпрямления. Если не принимать меры по сглаживанию пульсаций, фон переменного тока с частотами 50 и 100 Гц попадает вцепи звукового тракта и, как результат, о высококачественном звуке можно забыть. Для контроля и технического воздействия на степень пульсаций, используется параметр, который называется коэффициент пульсаций, обозначается символом е, и измеряется в процентах. Допустимые коэффициенты пульсаций источников питания в процентах для различных типов усилительных схем приводятся в таблице 1.
Так как каскады усиления в усилителях, включаются последовательно, от предварительных до оконечных, а общий коэффициент усиления равен произведению коэффициентов усиления всех каскадов, то напряжения пульсаций увеличиваются аналогично напряжению полезного сигнала. Фильтры питания предназначены для того, чтобы снизить уровень пульсаций и не как не воздействовать на напряжения полезных сигналов.

Источник тока для лампового

Двухтактный выходной каскад стереоусилителя отличается использованием в цепи катодов общего генератора тока на микросхеме, благодаря которому и обеспечивается парафазное управление пентодами 6П14П. Выбором коэффициента трансформации сопротивления нагрузки можно в некоторой степени изменять максимальную выходную мощность усилителя для любой акустической системы чувствительностью не менее 90 дБ.

Читайте так же:
Индикатор лампа постоянного тока

Характеристики усилителя

  • Полоса рабочих частот (по уровню-3 дБ), Гц — 25. 22000
  • Номинальная выходная мощность (на нагрузке 8 Ом), Вт — 3
  • Максимальная выходная мощность, Вт — 8
  • Номинальное сопротивление нагрузки, Ом — 8
  • Режим выходного каскада на пентодах 6П14П: напряжение на аноде Uа = 250 В;
  • Ток покоя в цепи катода Ік = 60 мА.

Принципиальная схема

Двухкаскадный усилитель мощности построен с двухтактным выходным каскадом по ультралинейной схеме (рис. 1). Усилитель имеет две особенности — отсутствие отдельного фазоинвертора и наличие стабилизированного источника тока в цепи катодов ламп двухтактного каскада.

Идею применения источника тока в выходном каскаде порекомендовал мне пермский конструктор радиоаппаратуры О. И. Катаев.

Первый каскад усилителя собран на двойном триоде 6НЗП. Лампа эта при средних значениях крутизны и коэффициента усиления имеет немаловажную для стереофонических усилителей особенность — симметричную цоколевку. Поэтому каскады левого и правого каналов можно выполнить совершенно симметричными как при навесном, так и при печатном монтаже.

Принципиальная схема двухтактного лампового усилителя мощности на 6П14П

Рис. 1. Принципиальная схема двухтактного лампового усилителя мощности на 6П14П.

Сигнал с регуляторов громкости (переменные резисторы R1.1 и R1.2) в каждом канале через разделительный конденсатор подается на сетку триода лампы VL1. Усиленный сигнал с резистора нагрузки R6 (R7) через конденсатор С5 (С6) поступает на управляющую сетку одной из выходных ламп VL2 и VL3 (здесь и далее указаны элементы лишь правого канала — верхнего по схеме).

Управляющая сетка лампы VL3 соединена с общим проводом, поэтому лампы возбуждаются в противофазе за счет катодной связи и высокого внутреннего сопротивления источника тока.

Детали

Источник тока выполнен на стабилизаторе напряжения КР142ЕН5В (5 В). Вход стабилизатора подключен к выводам катодов ламп, а к его выходу подключен токозадающий резистор R11. При номинале этого резистора, равном 43-47 Ом, суммарный ток катодов обеих ламп устанавливается около 120 мА, т. е. по 60 мА на каждую. Лампы рекомендуется подобрать максимально одинаковые по току.

По такой схеме (с источниками тока в катодах) было сделано несколько усилителей на лампах 6П14П. Лампы при макетировании конструкции работали стабильно при анодном напряжении Uа = 370 В и токе Iк = 60 мА.

При этих же значениях напряжения и тока Uа и Ік, но без источника тока (с фиксированным смещением), сразу начинался разогрев анодов После этих экспериментов в металле был сделан усилитель по двухтактной схеме на 6П14П при Uа = 305 В и Ік = 60 мА, как вариант описываемого здесь. Применение источника тока позволило улучшить линейность частотной характеристики усилителя.

Энергетический запас блока питания позволил применить в усилителе электронно-световые индикаторы уровня напряжения 6Е1П — VL6 и VL7. Наличие этих двух зеленых «глазков» «оживило” переднюю панель усилителя Помимо контроля уровня сигнала усилителя, по ним также можно судить о работоспособности блока питания.

Цепь, состоящая из резисторов R18, R19, диодов VD1, VD2 выполняет функции регулятора уровня и детектора огибающей а элементы С18 R22 определяют время восстановления чувствительности индикатора. Узел из этих деталей собран на отдельной небольшой плате которая установлена на основной плате усилителя.

В усилителе использованы только готовые моточные изделия от бытовой теле-радиоаппаратуры. Сетевой трансформатор ТС-160 и дроссель — от черно-белого телевизора «Рекорд-312″ или другого подобного. Выходные трансформаторы — от радиолы ”Урал-114».

При их отсутствии можно изготовить выходные трансформаторы самостоятельно на броневом или витом разрезном магнитопроводе сечением примерно 4..5 см. Индуктивность первичной обмотки — не менее 30 Гн. Для самостоятельной намотки выходного трансформатора полезны следующие сведения.

Первой на катушку наматывают часть вторичной обмотки — 20 витков провода ПЭВ-1 0,5, затем после слоя изоляции кабельной бумагой наматывают первичную обмотку проводом ПЭВ-1 0.112 с отводами от 1280 витков, далее от 1590, 1900 витков, после этого еще добавляют 1280 витков. После прокладки изоляции наматывают вторую часть вторичной обмотки — 37 витков ПЭВ-1 0,5. Коэффициент трансформации — 0,0175.

Остальные детали также могут быть позаимствованы из старых телевизоров — резисторы МЛТ, конденсаторы БМТ, МБМ и др. Однако оксидные конденсаторы целесообразно устанавливать новые отечественные или импортные, например, фирмы JAMICON.

Параметры трансформатора ТС-160

Напряжения и токи предлагаемого к использованию автором трансформатора ТС-160 (160Вт).

Принципиальная схема трансформатора ТС-160

Рис. 2. Принципиальная схема трансформатора ТС-160.

Первичная обмотка
Выводы
обмоток
Напряжение, ВТок, А
1 — 31270,6
1 — 2 — 2′ — 1′2200,35
1′ — 3′1270,6
Вторичная обмотка
Выводы
обмоток
Напряжение, ВТок, А
5 — 6421,1
5′ — 6′421,1
7 — 8660,9
7′ — 8′660,9
9 — 106,80,3
9′ — 10′6,80,3
11 — 126,93
11′ — 12′6,93

Параметры провода, используемого для намотки обмоток трансформатора ТС-160:

Выводы
обмоток
Число
витков
Марка и
диаметр
провода
Сопротивление,
Ом
1 — 2414ПЭЛ 0,693,3
2 — 364ПЭЛ 0,690,5
1′ — 2′414ПЭЛ 0,693,3
2′ — 3′64ПЭЛ 0,690,5
5 — 6158ПЭЛ 0,473,2
5′ — 6′158ПЭЛ 0,473,2
7 — 8250ПЭЛ 0,514
7′ — 8′250ПЭЛ 0,514
9 — 1026ПЭЛ 0,570,3
9′ — 10′26ПЭЛ 0,570,3
11 — 1226ПЭЛ 1,350,1
11′ — 12′26ПЭЛ 1,350,1
Читайте так же:
Включение двух лампочек от одного выключателя

Конструкция

Теперь подробнее о конструкции усилителя. Он имеет не совсем обычную конструкцию, в которой использован корпус от бесперебойного источника питания компьютера.

Все основные узлы усилителя собраны на четырех печатных платах из фольгироеанного стеклотекстолита — плата усилителя, плата источника анодного напряжения плата регулятора уровня с детекторами индикаторов и плата самих индикаторов. Все платы имеют простейший рисунок проводников из фольги, его можно вырезать стальным резаком, изготовленным из полотна ножовки по металлу.

Плата усилителя показана на рис. 3. С верхней стороны установлены панели ламп VL1-VL5. конденсаторы С7-С10, а также плата регулятора чувствительности и детектора индикаторов. Большинство же деталей на основной плате размещают со стороны печатного монтажа что позволяет их легко заменять, если это потребуется.

Микросхемы стабилизаторов КР142ЕН5В металлическим фланцем припаяны непосредственно к фольге минусовой шины питания что обеспечивает дополнительный теплоотвод.

Плата самодельного лампового стерео усилителя мощности

Рис. 2. Плата самодельного лампового стерео усилителя мощности.

О монтаже цепи накала ламп. Один из выводов подогревателей катода ламп соединен с общим проводом, а от другого цепь проложена одиночным медным проводом диаметром 0,9-1 мм в виниловой изоляции на расстоянии 30.. 40 мм от платы; в этом случае проблем с фоном в усилителе не возникало.

В тыловой части корпуса установлен трансформатор ТС-160, над ним находится плата выпрямителя и фильтра анодного напряжения (рис. 4). В передней панели корпуса просверлено несколько новых отверстий — под индикаторы и регуляторы громкости, которые установлены с внутренней стороны, также там находится сетевой выключатель.

Внешний вид на монтаж усилителя мощности

Рис. 3. Внешний вид на монтаж усилителя мощности.

Для придания конструкции жесткости передняя и задняя стенки шасси стянуты между собой стальным стержнем диаметром 12 мм. в торцах которого просверлены отверстия и нарезана резьба М4.

В крышке корпуса, в ее верхней части просверлено несколько десятков отверстий над лампами 6П14П для оттока разогретого воздуха. В боковых стенках этой крышки, вблизи от ламп вырезаны прямоугольные отверстия, в которые изнутри вклеены силиконовым герметиком тонированные стекла.

На задней панели усилителя находятся колодка сетевого разъема с предохранителем, гнезда входа и выхода. Гнезда входов усилителя («тюльпаны») установлены через изолирующие прокладки и не имеют прямого контакта с корпусом усилителя.

Корпуса «тюльпанов» соединены с минусовым (общим проводом) платы усилителя и корпусом усилителя через оплетку экранирующего кабеля. Корпус усилителя и передняя панель окрашены тремя слоями автомобильной эмали типа «металлик» из аэрозольной упаковки.

О. Платонов, г. Пермь. Р-2010-05.

Автор: О. Платонов, г. Пермь. Р-2010-05.

Вас может заинтересовать:

  1. Гибридный усилитель мощности ЗЧ Джеффа Маколэя (80 Вт)
  2. Модернизация простого усилителя НЧ. Г.Крылов
  3. Ультралинейный усилитель с микрофонным входом
  4. Ламповый УМЗЧ с глубокой ООС (Pвых = 80 Вт)
  5. Простой двухламповый усилитель НЧ. В.Большов
  1. 6П14П
    • Все статьи с данной радиолампой
    • Справочные данные
  2. 6Н3П
    • Все статьи с данной радиолампой
    • Справочные данные
  3. 6Е1П
    • Все статьи с данной радиолампой
    • Справочные данные

Комментарии к статьям на сайте временно отключены по причине огромного количества спама.

Источник тока для лампового

Стабилизированный источник питания для лампового усилителя

Источник питания (ИП) является обязательной частью любой радиоэлектронной аппаратуры. Его качество, т.е. надёжность, экономичность, эксплуатационные свойства — в значительной мере определяет технические показатели всего аппарата. Постоянное повышение требований к техническим характеристикам усилительных устройств приводит к тому, что и к вторичным ИП предъявляются всё более жёсткие требования.

Анализ большинства серийных ламповых усилителей показывает, что ИП в них построен по традиционной схеме: сетевой трансформатор, выпрямитель (на диодах или кенотронах) и сглаживающий фильтр с конденсаторами, резисторами и дросселями). Напряжение такого ИП обычно нестабильно, из-за чего меняются режимы работы усилителя. При этом выходная мощность падает, а нелинейные искажения, наоборот, растут.

Сейчас очень популярны однотактники на прямонакальных триодах — 6С4С, 2А3, 300В и ГМ-70. Как правило, их выходная мощность невелика — от 3,5 до 25 Вт, и многие разработчики поддаются соблазну построить ИП по упрощенной схеме с П-фильтром. А между тем, звучание этих усилителей, как никаких других, зависит от качества питающего их источника. Более того, некоторые недостатки, считающиеся неотъемлемым атрибутом однотактных выходных каскадов и ограничивающие их распространение, — слабая динамика в нижнем диапазоне и плохо артикулированный бас — в 90 случаях из 100 являются следствием неправильной организации питания.

Многие пытаются решить проблему, наращивая ёмкость конденсаторов фильтра и увеличивая габариты выходного трансформатора. Это дает некоторый выигрыш в звучании, но главные проблемы остаются. И потом, до какой степени стоит наращивать ёмкости в блоке питания? Раньше в ходу был параметр «энергоёмкость ИП», выраженный в джоулях на ватт выходной мощности. Энергия, запасенная в конденсаторах фильтра, рассчитывается по формуле:

А = 1/2 * U2 * C, где А — в джоулях; U — в вольтах; С — в фарадах.

Если же А поделить на Pвых., то получим величину, характеризующую энергетические показатели усилителя. У серийных зарубежных усилителей эта величина находится в пределах 1,5 — 2,5 Дж/Вт. Много это или мало? Сказать трудно, хотя и позволяет в какой-то мере судить об энерговооруженности аппарата.

Нашему КБ тоже пришлось столкнуться с такой проблемой. Несколько лет назад мы получили заказ на разработку однотактного лампового усилителя с выходной мощностью не менее 30 — 35 Вт. Требования были сформулированы так: аппарат должен иметь динамику двухтактного, бас — как у транзисторного, а эмоциональность и музыкальность — как у однотактника. Ничего себе задачка? Не стану подробно описывать все муки творчества, скажу только, что в конце концов был выбран однотактный выходной каскад на двух 6С33С-В, запараллеленных через магнитный поток выходного трансформатора, причем с нагрузкой в цепи катода.

Когда мы сделали макет, выяснилось, что на номинальной мощности при изменении частоты сигнала от 400 до 40 Гц анодное напряжение падало с 200 до 160 В. Источник, несмотря на солидный запас мощности, не держал. Прослушивание музыки, богатой НЧ-составляющими, подтвердило результаты стендовых измерений: бас прорабатывался вяло.

Пришлось взяться за стабилизированный ИП, и чтобы не нарушать чистоту ламповой концепции, в качестве проходной выбрали лампу 6С33С-В. Которая, кстати, изначально и разрабатывалась для этих целей, поэтому наряду с большой токоотдачей имеет очень низкое внутреннее сопротивление. Но прежде чем перейти к описанию конструкции, рассмотрим общие принципы построения стабилизаторов напряжения.Чаще всего применяются параметрические и компенсационные, причем последние бывают последовательные и параллельные (об этом уже успел рассказать Андрей Маркитанов, поэтому опустим подробности. — Прим. ред.). Параметрические — наиболее простые, они строятся на газоразрядных или кремниевых стабилитронах. Номенклатура последних довольно широка, что позволяет строить стабилизаторы с выходным напряжением от единиц до сотен вольт. Но любая простая схема далека от совершенства. В параметрическом стабилизаторе ток через нагрузку всегда должен быть меньше, чем через сам стабилитрон, поэтому к.п.д. таких стабилизаторов низок, и они уместны лишь при малой мощности потребителя.

Компенсационные стабилизаторы последовательного типа обладают хорошим к.п.д., высоким коэффициентом стабилизации и малым выходным сопротивлением. Поэтому они и получили столь широкое распространение. Однако и у них есть недостатки — низкая надёжность при перегрузках и коротком замыкании в нагрузке. Это особенно опасно в транзисторных схемах, поэтому приходится вводить в них сложные системы защиты с токовыми датчиками. Неоспоримое достоинство параллельных стабилизаторов — нечувствительность к форс-мажорным ситуациям. При к.з. в нагрузке напряжение на регулирующем элементе и ток, протекающий через него, резко уменьшаются, и никаких фатальных последствий не бывает. Но у параллельных стабилизаторов такие важные параметры, как к.п.д. и выходное сопротивление, оставляют желать лучшего. Стабилизирующие же качества обоих типов примерно одинаковы.

Поэтому наш выбор пал на последовательный стабилизатор, ведь лампы менее чувствительны к перегрузкам и к.з. Да и схема получается простой и надежной.

  • РЭ — регулирующий элемент;
  • И — измерительный элемент;
  • ЭС — элемент сравнения;
  • Uo — опорный элемент;
  • УПТ — уcилитель постоянного тока;
  • Rн — нагрузка.

Итак, конкретный пример (рис. 2).
увеличить
Увеличить фото

Как видите, нам пришлось стабилизировать не только анодное напряжение выходных ламп, но также драйвера и сеточных цепей. Это из-за того, что «просадка» источника сказывалась и на питании каскадов предварительного усиления, правда, в меньшей степени — отклонения от номинального значения были примерно 20 — 25%. Поскольку потребляемый ток здесь невелик, мы применили параметрический стабилизатор.Описываемым ИП комплектуются усилители с выходной мощностью до 16 Вт в каждом канале. При необходимости напряжения на выходе можно изменить, устанавливая газовые стабилитроны с большим или меньшим напряжением стабилизации.

Детали и конструкция

Мы старались использовать по возможности широко распространённые и недорогие радиоэлементы — резисторы типа МЛТ, пленочные конденсаторы К73-17 и т.д. А вот электролитические конденсаторы желательно приобрести импортные, поскольку применение отечественных значительно увеличит габариты блока. Хотя на качестве и надежности источника это не скажется.

Лампы тоже не дефицитны — 6С33С-В, 6С19П, 6Н2П, СГ1П, СГ2П (СГ15-2). Можно применить стабилитроны и октальной серии, они красиво горят, но занимают больше места. Выпрямители построены на высокочастотных диодах 2Д213А, хотя можно использовать и «быстрые» импортные на соответствующие токи и напряжения. От кенотронов мы отказались из-за того, что они в данной конструкции усилителя ухудшали динамику.

Трансформаторы — основа любого ИП, и на них хочу остановиться более подробно. Дело в том, что при питании выходных каскадов, работающих в классе А, потребление энергии происходит постоянно и ток почти не зависит от амплитуды выходного сигнала. При этом сетевые трансформаторы всегда работают с полной нагрузкой. А так как к.п.д. усилителя класса А довольно низок, в лучшем случае это где-то 25%, а то и меньше, то потери в ИП довольно велики. Как правило, все они превращаются в тепло, и его необходимо отводить, иначе блок станет перегреваться, со всеми вытекающими неприятностями. Практика конструирования усилителей подобного рода в нашем КБ показала, что для надёжной работы без перегрева и гудения необходим 3 — 4-кратный запас габаритной мощности сетевого трансформатора по отношению к потребляемой. То есть, если ваш усилитель потребляет 100 Вт, выбирайте 300 — 400-ваттное железо, не ошибётесь.

В нашем же случае речь идёт о потреблении порядка 250 — 265 Вт, так что мощность сетевого трансформатора желательно иметь порядка 800 — 900 Вт. Из конструктивных соображений мы изготовили два трансформатора по 440 Вт и распределили нагрузку на них по возможности равномерно. В соответствии с вышеизложенными рекомендациями потребление от каждого из них составляет 120 — 130 Вт.

Обратите внимание, что напряжения на выводах трансформаторов указаны в режиме холостого хода.

Конструкция

Источник питания собран на каркасе размером 260 х 150 х 370 мм (Ш х В х Г), выполненном из алюминиевых уголков 15 х 15. На нем установлены трансформаторы и дроссели, а также плата стабилизатора. Снизу к каркасу прикреплены четыре опорные ножки и поддон. Лицевая панель выполнена из алюминия толщиной 5 — 8 мм, на ней находятся сетевой переключатель и индикатор включения. На задней стенке (алюминий толщиной 2 мм) установлен сетевой ввод, предохранитель, а также разъём, соединяющий источник питания с усилителем. Последний может быть любым, но учтите, что по цепям накала лампа 6С33С (а у нас их в усилителе две) потребляет 6,6 А, так что хотя бы пара контактов должна быть рассчитана на большой ток. Соединение с усилителем выполнено гибким жгутом длинной 0,5 — 0,75 м из провода типа МГТФ-0,35. В накальные линии необходимо заложить провод сечением не менее 5 мм2. Сверху каркас закрыт перфорированным кожухом.

Технические данные трансформаторов и дросселей

Регулировка блока питания

Сначала невредно убедиться, что все обмотки двухкатушечных трансформаторов скоммутированы правильно и на их выводах присутствуют именно те напряжения, на которые вы рассчитывали. Затем подключаем стабилизаторы и вольтметром проверяем поочерёдно режимы каждого звена. В отличие от параллельных стабилизаторов последовательные можно включать без нагрузки, что мы и делаем. После 5 — 10-минутного прогрева устанавливаем подстроечными резисторами RT1 и RT2 выходные напряжения +210 и +350 В соответственно. Запас по регулированию должен быть примерно 20% в обе стороны. Затем подключаем эквивалент нагрузки. Для мощного каскада это может быть обычная лампа накаливания 100 Вт на 220 В, а для драйверного звена — резистор типа ПЭВ-50 сопротивлением 3500 Ом. Под нагрузкой напряжение не должно просаживаться более чем на 0,5 — 1 В. Погоняйте блок в таком режиме несколько часов, и если в схеме ничего не дымит и не перегревается, работу можно считать законченной.

Теперь посмотрим, стоило ли вообще затевать весь этот проект. Первое, что мы отметили после подключения усилителя, — стабильность его режимов при изменении напряжения питающей сети. При скачках на линии от +5% и -10% (а у нас в Таганроге бывает и больше) анодные, и что особенно важно, сеточные потенциалы не менялись. Сравнительное прослушивание двух аналогичных усилителей с разными ИП — традиционным и стабилизированным — показало, что последний явно обладает лучшей энергетикой. Звучание становится более плотным и насыщенным во всём спектре частот, улучшается микро- и макродинамика.

Эмоциональный эффект примерно тот же, что при сравнении усилителей с ООС и без неё. Слушать аппарат с нестабилизированным источником питания уже не хочется.

Бестрансформаторный блок питания

Бестрансформаторный блок питания в радиолюбительской спортивной аппаратуре не содержащий мощных высоковольтных трансформаторов.
Преимущества подобных блоков питания очевидны:
Они позволяют уменьшить габариты и массу передающей аппаратуры.

Особенно эффективно применение бестрансформаторного питания в ламповых усилителях мощности. Когда на основе современных полупроводниковых диодов и малогабаритных электролитических конденсаторов можно создать очень легкие и весьма компактные усилители. Такие усилители удобны при работе как в стационарных условиях, так и в радиоэкспедициях.

Бестрансформаторный блок питания рассмотренные ниже, предназначены для работы с однофазной сетью переменного тока напряжением 220 В.

Следует сразу подчеркнуть, что эксплуатация аппаратуры с бестрансформаторным питанием возможна в том случае, если на радиостанции имеется надежное заземление. Наличие гальванической связи источника питания с сетью переменного тока требует применения не только хорошего заземления, но и устройства, исключающего включение аппаратуры при неправильном подключении к сети бестрансформаторного блока питания.

Нельзя забывать и то, что такая защита срабатывает только при подключенном заземлении, в чем необходимо в обязательном порядке убедиться перед тем, как вставить вилку сетевого шланга в розетку. В целом изготовление конструкций с бестрансформаторным питанием можно рекомендовать радиолюбителям, уже имеющим опыт в изготовлении и эксплуатации связной аппаратуры.

Типовые режимы мощных каскадов на распространенных лампах ГУ-19, ГУ-29, ГС-90, ГИ-7Б и т. п. обеспечиваются источником питания, схема которого приведена на рис.

Бестрансформаторный блок питания

Он состоит из двух однополупериодных выпрямителей (VI, С1 и V2, С2), работающих непосредственно от сети с выходными напряжениями + 300 В и —300 В (относительно корпуса). Режим работы лампы V5 определяется стабилитронами V3 и V4. Напряжения на электродах лампы V5 (относительно катода) определяются так:

где Uс1—напряжение на управляющей сетке; Uс2 — напряжение на экранной сетке; (Uа — анодное напряжение.

При выборе стабилитронов необходимо учитывать, чтобы максимальный ток стабилизации стабилитрона V3 был не меньше пикового значения анодного тока, a V4—тока экранной сетки. Необходимый диапазон напряжений стабилизации и токов обеспечивают диоды Д815А—Д817Г. Поскольку катод лампы V5 находится под потенциалом около — 300 В относительно корпуса, обмотки накального трансформатора должны быть хорошо изолированы от корпуса.

Высокие динамические характеристики бестрансформаторного источника питания обусловлены тем, что в выпрямителях отсутствуют трансформаторы и дроссели фильтра, имеющие значительную индуктивность. Статическая характеристика определяется конденсаторами С1 и С2.

Для обеспечения уровня пульсаций выходного напряжения менее 0,05%, необходимого для работы линейного усилителя мощности , емкости этих конденсаторов (в микрофарадах) должны соответствовать численному значению максимальной мощности (выраженной в ваттах), потребляемой от источника питания. Конденсаторы (фильтра и блокировочные) должны быть рассчитаны на напряжение не менее 350 В. Конденсаторы C1, С2 могут быть малогабаритные — К50-7, К50-12.

Выпрямительные диоды V1 и V2 должны быть рассчитаны на обратное напряжение не менее 350 В и пиковый ток, превышающий ток заряда конденсаторов С1 и С2 (обычно от 2 до 5 А). Такому условию удовлетворяют диоды Д246, КД202К — КД202С.
Усилитель мощности кв радиостанции.
На рисунке приведена схема выходного линейного усилителя c бестрансформаторный блок питания выполненного на двух металлокерамических триодах ГИ-7Б,

Включенных по схеме с заземленной сеткой. Бестрансформаторный источник питания для усилителя рассчитан на пиковую нагрузку около 360 Вт, что позволяет в режиме усиления однополосного сигнала подводить мощность 200 Вт (среднее значение). Коэффициент усиления по мощности — 15 дБ. Режим ламп V4, V5 рассчитан так, что при напряжении сети 220 В Uc1= — 7B, Ua — +600 В, начальный анодный ток обеих ламп, включенных параллельно, равен 40 мА, максимальный анодный ток — 600 мА. При нестабильности сети ±20 В усилитель сохраняет хорошую линейность.

Сопротивление анодной нагрузки каскада — 1 кОм, Применение в усилителе двух ламп, включенных параллельно, объясняется необходимостью получить большой анодный ток при сравнительно низком анодном напряжении. Средняя мощность, рассеиваемая на аноде каждой лампы, не превышает 50 Вт, вследствие чего лампы надежно работают и без принудительного воздушного охлаждения.

Пусковое устройство выполнено на электромагнитном реле K1, контакты K1.1 и К 1.2 которого подключают нулевой провод сети к корпусу и подают напряжение сети на выпрямители на диодах V1 и V2. При включенном тумблере S1 пусковое устройство не сработает, а следовательно, источник питания будет отключен от сети, если корпус прибора не заземлен или корпус прибора заземлен, но контакт сетевой вилки А7 подключен к нулевому проводу сети. Таким образом, при включении трансивера в сеть необходимо подсоединить к корпусу заземление, включить тумблер S1 и найти такое положение вилки X1 в сетевой розетке, при котором пусковое устройство срабатывает.

Реле К2 и КЗ коммутируют соответствующие цепи при переходе с приема на передачу. При работе на прием питающие напряжения (кроме накала) с ламп сняты, а трансивер подключен к антенне через разъем ХЗ.

Конденсаторы С1 и СЗ—К50-12, С2 и С4 — К50-7, С6 — С10 — КСО на рабочее напряжение 500 В.

Дроссели L1 и L3 должны быть рассчитаны на ток 600 мА, L4, L5 — на 4 А. Последние наматывают на высокочастотном ферритовом кольце, например 50ВЧ3, в два провода (20 витков МГШВ сечением 1.5 мм2). Катушка L2 намотана на резисторе R1 она содержит 3 витка посеребренного провода диаметром 1 мм. В качестве катушки L7 используется вариометр от радиостанции PC Б-5. Катушка L6 — бескаркасная (диаметр намотки 40 мм), содержит 2 витка посеребренного провода диаметром 2,5 мм. Реле К1 и К2 — 8Д-54, паспорт ОАБ.393.054, КЗ — высокочастотное от радиостанции РСБ-5. Трансформатор 77 — ТН-39-127/220-50. При указанных на схеме номиналах конденсаторов С1 — С4 падение анодного напряжения (по сравнению с начальным режимом) не превышает 30 В при токе 600 мА.

Схема усилитель мощности на 144Мгц.

На рисунке приведена схема линейного усилителя, работающего в диапазоне 144… 146 МГц,

Выполненного на лампе ГУ-29. Коэффициент усиления по мощности около 20 дБ, что позволяет использовать в качестве возбудителя транзисторный УКВ передатчик. Режим работы лампы ГУ-29 следующий: Uc1 = — 22В, Uc2 = + 225В, Uа = +580 В. Максимальный анодный ток равен 250 мА. При нестабильности сети ±15 В режим лампы изменяется незначительно, а линейность усилителя мощности не ухудшается.

Детали и конструкция бестрансформаторный блок питания

Реле К1 (РЭС-6, паспорт РФ0.452.106) — пусковое, К2 (РЭС-10, паспорт РС4.524.305) коммутирует катодную цепь лампы V5. Последняя при работе на прием закрыта. Дроссели L3, LA, L7 индуктивностью 10 мкГ должны быть рассчитаны на ток 0,3 А. Катушка L2 — бескаркасная, содержит 5 витков посеребренного провода диаметром 1,5 мм. шаг намотки — 3 мм. Наружный диаметр катушки—12 мм. Катушка связи L1 содержит 1,5 витка посеребренного провода диаметром 1 мм, шаг намотки — 3 мм, наружный диаметр катушки 16 мм. Наматывают ее поверх L2. Катушка L5 выполнена из посеребренного провода диаметром 2 мм в виде петли с размерами 80×35 мм.

Петлю связи L6 размерами 40X35 мм изготавливают из посеребренного провода диаметром 1,5 мм.

Располагают ее на расстоянии 6 мм от L5. Конденсаторы С1, С2 — К50-7 или К50-12 на рабочее напряжение 350 В, С7—С11— КСО на рабочее напряжение 500 В. СЗ, С4 и C13 — КПВ. Дифференциальный конденсатор С12 составлен из двух КПВ роторы которых закреплены на одной оси. Накальный трансформатор T1 — ТНЗЗ-127/220-50 или любой другой, имеющий отдельные обмотки на напряжения 6,3 и 12,6 В. При налаживании усилителя конденсатором СЗ регулируют связь с возбудителем, С13 — связь с антенной, конденсатором С4 настраивают на рабочую частоту сеточный контур, а С12—анодный.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector