Gutdver.ru

Отделка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет сечения кабеля. По мощности, току, длине

Расчет сечения кабеля. По мощности, току, длине

Как рассчитать кабель по току, напряжению и длине. Кабели, как известно, бывают разного сечения, материала и с разным количеством жил. Какой из них надо выбрать, чтобы не переплачивать, и одновременно обеспечить безопасную стабильную работу всех электроприборов в доме. Для этого необходимо произвести расчет кабеля. Расчет сечения проводят, зная мощность приборов, питающихся от сети, и ток, который будет проходить по кабелю. Необходимо также знать несколько других параметров проводки.

Основные правила

При прокладке электросетей в жилых домах, гаражах, квартирах чаще всего используют кабель с резиновой или ПВХ изоляцией, рассчитанный на напряжение не более 1 кВ. Существуют марки, которые можно применять на открытом воздухе, в помещениях, в стенах (штробах) и трубах. Обычно это кабель ВВГ или АВВГ с разной площадью сечения и количеством жил.
Применяют также провода ПВС и шнуры ШВВП для подсоединения электрических приборов.

После расчета выбирается максимально допустимое значение сечения из ряда марок кабеля.

Raschet secheniia kabelia rasprostranennyi provod

Основные рекомендации по выбору сечения находятся в Правилах устройства электроустановок (ПУЭ). Выпущено 6-е и 7-е издания, в которых подробно описывается, как прокладывать кабели и провода, устанавливать защиту, распределяющие устройства и другие важные моменты.

За нарушение правил предусмотрены административные штрафы. Но самое главное состоит в том, что нарушение правил может привести к выходу из строя электроприборов, возгоранию проводки и серьезным пожарам. Ущерб от пожара измеряется порой не денежной суммой, а человеческими жертвами.

Важность правильного выбора сечения

Почему расчет сечения кабеля так важен? Чтобы ответить, надо вспомнить школьные уроки физики.

Ток протекает по проводам и нагревает их. Чем сильнее мощность, тем больше нагрев. Активная мощность тока вычисляют по формуле:
P=U*I* cos φ=I²*R

R – активное сопротивление.

Как видно, мощность зависит от силы тока и сопротивления. Чем больше сопротивление, тем больше выделяется тепла, то есть тем сильнее провода нагреваются. Аналогично для тока. Чем он больше, тем больше греется проводник.

Сопротивление в свою очередь зависит от материала проводника, его длины и площади поперечного сечения.

R=ρ*l/S

ρ – удельное сопротивление;

l – длина проводника;

S– площадь поперечного сечения.

Видно, что чем меньше площадь, тем больше сопротивление. А чем больше сопротивление, тем проводник сильнее нагревается.

Площадь рассчитывается по формуле:
S=π*d²/4

d – диаметр.

Не стоит также забывать удельное сопротивление. Оно зависит от материала, из которого сделаны провода. Удельное сопротивление алюминия больше, чем меди. Значит, при одинаковой площади сильнее нагреваться будет алюминий. Сразу становится понятно, почему алюминиевые провода рекомендуют брать большего сечения, чем медные.

Чтобы каждый раз не вдаваться в длинный расчет сечения кабеля, были разработаны нормы выбора сечения проводов в таблицах.

Расчет сечения провода по мощности и току

Расчет сечения провода зависит от суммарной мощности, потребляемой электрическими приборами в квартире. Ее можно рассчитать индивидуально, или воспользоваться средними характеристиками.

Для точности расчетов составляют структурную схему, на которой изображены приборы. Узнать мощность каждого можно из инструкции или прочитать на этикетке. Наибольшая мощность у электрических печек, бойлеров, кондиционеров. Суммарная цифра должна получиться в диапазоне приблизительно 5-15 кВт.

Зная мощность, по формуле определяют номинальную силу тока:
I=(P*K)/(U*cos φ)

P – мощность в ваттах

U=220 Вольт

K=0,75 – коэффициент одновременного включения;

cos φ=1 для бытовых электроприборов;

Если сеть трехфазная, то применяют другую формулу:
I=P/(U*√3*cos φ)

U=380 Вольт

Рассчитав ток, надо воспользоваться таблицами, которые представлены в ПУЭ, и определить сечение провода. В таблицах указан допустимый длительный ток для медных и алюминиевых проводов с изоляцией различного типа. Округление всегда производят в большую сторону, чтобы был запас.

Можно также обратиться к таблицам, в которых сечение рекомендуют определять только по мощности.

Raschet secheniia kabelia tablitsa

Разработаны специальные калькуляторы, по которым определяют сечение, зная потребляемую мощность, фазность сети и протяженность кабельной линии. Следует обращать внимание на условия прокладки (в трубе или на открытом воздухе).

Влияние длины проводки на выбор кабеля

Если кабель очень длинный, то возникают дополнительные ограничения по выбору сечения, так как на протяженном участке происходят потери напряжения, которые в свою очередь приводят к дополнительному нагреву. Для расчета потерь напряжения используют понятие «момент нагрузки». Его определяют как произведение мощности в киловаттах на длину в метрах. Далее смотрят значение потерь в таблицах. Например, если потребляемая мощность составляет 2 кВт, а длина кабеля 40 м, то момент равняется 80 кВт*м. Для медного кабеля сечением 2,5 мм². это означает, что потери напряжения составляют 2-3%.

Если потери будут превышать 5%, то необходимо брать сечение с запасом, больше рекомендованного к использованию при заданном токе.

Расчетные таблицы предусмотрены отдельно для однофазной и трехфазной сети. Для трехфазной момент нагрузки увеличивается, так как мощность нагрузки распределяется по трем фазам. Следовательно, потери уменьшаются, и влияние длины уменьшается.

Читайте так же:
Как посчитать ток короткого замыкания для кабеля

Потери напряжения важны для низковольтных приборов, в частности, газоразрядных ламп. Если напряжение питания составляет 12 В, то при потерях 3% для сети 220 В падение будет мало заметно, а для низковольтной лампы оно уменьшится почти вдвое. Поэтому важно размещать пускорегулирующие устройства максимально близко к таким лампам.

Расчет потерь напряжения выполняется следующим образом:
∆U = (P∙r0+Q∙x0)∙L/ Uн

P — активная мощность, Вт.

Q — реактивная мощность, Вт.

r0 — активное сопротивление линии, Ом/м.

x0 — реактивное сопротивление линии, Ом/м.

– номинальное напряжение, В. (оно указывается в характеристиках электроприборов).

L — длинна линии, м.

Ну а если попроще для бытовых условий:
ΔU=I*R

R – сопротивление кабеля, рассчитывается по известной формуле R=ρ*l/S;

I – сила тока, находят из закона Ома;

Допустим, у нас получилось, что I=4000 Вт/220 В=18,2 А.

Сопротивление одной жилы медного провода длиной 20 м и площадью 1,5 мм кв. составило R=0,23 Ом. Суммарное сопротивление двух жил равняется 0,46 Ом.

Тогда ΔU=18,2*0,46=8,37 В

В процентном соотношении

На длинных линиях от перегрузок и коротких замыканий устанавливают автоматические выключатели с тепловыми и электромагнитными расцепителями.

Как выбрать сечение кабеля — советы проектировщика

На рынках часто можно увидеть написанные от руки таблички, указывающие, какой кабель необходимо приобрести покупателю в зависимости от ожидаемого тока нагрузки. Не верьте этим табличкам, так как они вводят Вас в заблуждение. Сечение кабеля выбирается не только по рабочему току, но и еще по нескольким параметрам.

Прежде всего, необходимо учитывать, что при использовании кабеля на пределе его возможностей жилы кабеля нагреваются на несколько десятков градусов. Приведенные на рисунке 1 величины тока предполагают нагрев жил кабеля до 65 градусов при температуре окружающей среды 25 градусов.

Если в одной трубе или лотке проложено несколько кабелей, то вследствие их взаимного нагрева (каждый кабель нагревает все остальные кабели) максимально допустимый ток снижается на 10 – 30 процентов.

Также максимально возможный ток снижается при повышенной температуре окружающей среды. Поэтому в групповой сети (сеть от щитков до светильников, штепсельных розеток и других электроприемников) как правило, используют кабели при токах, не превышающих значений 0,6 – 0,7 от величин, приведенных на рисунке 1.

Рис. 1. Допустимый длительный ток кабелей с медными жилами

Исходя из этого повсеместное использование автоматических выключателей с номинальным токов 25А для защиты розеточных сетей, проложенных кабелями с медными жилами сечением 2,5 мм2 представляет опасность. Таблицы снижающих коэффициентов в зависимости от температуры и количества кабелей в одном лотке можно посмотреть в Правилах устройства электроустановок (ПУЭ).

Дополнительные ограничения возникают, когда кабель имеет большую длину. При этом потери напряжения в кабеле могут достичь недопустимых значений. Как правило, при расчете кабелей исходят из максимальных потерь в линии не более 5%.

Потери рассчитать не сложно, если знать величину сопротивления жил кабелей и расчетный ток нагрузки. Но обычно для расчета потерь пользуются таблицами зависимости потерь от момента нагрузки. Момент нагрузки вычисляют как произведение длины кабеля в метрах на мощность в киловаттах.

Как выбрать сечение кабеля

Данные для расчета потерь при однофазном напряжении 220 В показаны в таблице 1. Например для кабеля с медными жилами сечением 2,5 мм2 при длине кабеля 30 метров и мощности нагрузки 3 кВт момент нагрузки равен 30х3=90, и потери составят 3%. Если расчетное значение потерь превышает 5%, то необходимо выбрать кабель большего сечения.

Таблица 1. Момент нагрузки, кВт х м, для медных проводников в двухпроводной линии на напряжение 220 В при заданном сечении проводника

Момент нагрузки, кВт х м, для медных проводников в двухпроводной линии на напряжение 220 В при заданном сечении проводника

По таблице 2 можно определить потери в трехфазной линии. Сравнивая таблицы 1 и 2 можно заметить, что в трехфазной линии с медными проводниками сечением 2,5 мм2 потерям 3% соответствует в шесть раз больший момент нагрузки.

Тройное увеличение величины момента нагрузки происходит вследствие распределения мощности нагрузки по трем фазам, и двойное – за счет того, что в трехфазной сети при симметричной нагрузке (одинаковых токах в фазных проводниках) ток в нулевом проводнике равен нулю. При несимметричной нагрузке потери в кабеле возрастают, что необходимо учитывать при выборе сечения кабеля.

Таблица 2. Момент нагрузки, кВт х м, для медных проводников в трехфазной четырехпроводной линии с нулем на напряжение 380/220 В при заданном сечении проводника

Момент нагрузки, кВт х м, для медных проводников в трехфазной четырехпроводной линии с нулем на напряжение 380/220 В при заданном сечении проводника

Потери в кабеле сильно сказываются при использовании низковольтных, например галогенных ламп. Это и понятно: если на фазном и нулевом проводниках упадет по 3 Вольта, то при напряжении 220 В мы этого скорее всего не заметим, а при напряжении 12 В напряжение на лампе упадет вдвое до 6 В. Именно поэтому трансформаторы для питания галогенных ламп необходимо максимально приближать к лампам. Например при длине кабеля 4,5 метра сечением 2,5 мм2 и нагрузке 0,1 кВт (две лампы по 50 Вт) момент нагрузки равен 0,45, что соответствует потерям 5% (Таблица 3).

Таблица 3. Момент нагрузки, кВт х м, для медных проводников в двухпроводной линии на напряжение 12 В при заданном сечении проводника

Момент нагрузки, кВт х м, для медных проводников в двухпроводной линии на напряжение 12 В при заданном сечении проводника

Приведенные таблицы не учитывают увеличения сопротивления проводников от нагрева за счет протекания по ним тока. Поэтому если кабель используется при токах 0,5 и более от максимально допустимого тока кабеля данного сечения, то необходимо вводить поправку. В простейшем случае если Вы рассчитываете получить потери не более 5%, то рассчитывайте сечение исходя из потерь 4%. Также потери могут возрасти при наличии большого количества соединений жил кабелей.

Кабели с алюминиевыми жилами имеют сопротивление в 1,7 раза большее по сравнению с кабелями с медными жилами, соответственно и потери в них в 1,7 раза больше.

Вторым ограничивающим фактором при больших длинах кабеля является превышение допустимого значения сопротивления цепи фаза – ноль. Для защиты кабелей от перегрузок и коротких замыканий, как правило, используют автоматические выключатели с комбинированным расцепителем. Такие выключатели имеют тепловой и электромагнитный расцепители.

Электромагнитный расцепитель обеспечивает мгновенное (десятые и даже сотые доли секунды) отключение аварийного участка сети при коротком замыкании. Например автоматический выключатель, имеющий обозначение С25, имеет тепловой расцепитель на 25 А и электромагнитный на 250А. Автоматические выключатели группы «С» имеют кратность отключающего тока электромагнитного расцепителя к тепловому от 5 до 10. Но при расчете линии на ток короткого замыкания берется максимальное значение.

В общее сопротивление цепи фаза – ноль включаются: сопротивление понижающего трансформатора трансформаторной подстанции, сопротивление кабеля от подстанции до вводного распределительного устройства (ВРУ) здания, сопротивление кабеля, проложенного от ВРУ к распределительному устройству (РУ) и сопротивление кабеля собственно групповой линии, сечение которого необходимо определить.

Если линия имеет большое количество соединений жил кабеля, например групповая линия из большого количества светильников, соединенных шлейфом, то сопротивление контактных соединений также подлежит учету. При очень точных расчетах учитывают сопротивление дуги в месте замыкания.

Полное сопротивление цепи фаза-ноль для четырехжильных кабелей приведены в таблице 4. В таблице учтены сопротивления как фазного, так и нулевого проводника. Значения сопротивлений приведены при температуре жил кабелей 65 градусов. Таблица справедлива и для двухпроводных линий.

Таблица 4. Полное сопротивление цепи фаза — ноль для 4-жильных кабелей, Ом/км при температуре жил 65 о С

Полное сопротивление цепи фаза - ноль для 4-жильных кабелей, Ом/км при температуре жил 65оС

В городских трансформаторных подстанциях, как правило, установлены трансформаторы мощностью от 630 кВА и более, имеющие выходное сопротивление Rтп менее 0,1 Ома. В сельских районах могут быть использованы трансформаторы на 160 – 250 кВА, имеющие выходное сопротивление порядка 0,15 Ом, и даже трансформаторы на 40 – 100 кВА, имеющие выходное сопротивление 0,65 – 0,25 Ом.

Кабели питающей сети от городских трансформаторных подстанций к ВРУ домов, как правило используют с алюминиевыми жилами с сечением фазных жил не менее 70 – 120 мм2. При длине этих линий менее 200 метров сопротивление цепи фаза – ноль питающего кабеля (Rпк) можно принять равным 0,3 Ом. Для более точного расчета необходимо знать длину и сечение кабеля, либо измерить это сопротивление. Один из приборов для таких измерений (прибор Вектор) показан на рис. 2.

Прибор для измерения сопротивления цепи фаза-ноль Вектор

Рис. 2. Прибор для измерения сопротивления цепи фаза-ноль «Вектор»

Сопротивление линии должно быть таким, чтобы при коротком замыкании ток в цепи гарантированно превысил ток срабатывания электромагнитного расцепителя. Соответственно, для автоматического выключателя С25 ток короткого замыкания в линии должен превысить величину 1,15х10х25=287 А, здесь 1,15 – коэффициент запаса.

Следовательно, сопротивление цепи фаза – ноль для автоматического выключателя С25 должно быть не более 220В/287А=0,76 Ом. Соответственно для автоматического выключателя С16 сопротивление цепи не должно превышать 220В/1,15х160А=1,19 Ом и для автомата С10 – не более 220В/1,15х100=1,91 Ом.

Таким образом, для городского многоквартирного дома, принимая Rтп=0,1 Ом; Rпк=0,3 Ом при использовании в розеточной сети кабеля с медными жилами с сечением 2,5 мм2, защищенного автоматическим выключателем С16, сопротивление кабеля Rгр (фазного и нулевого проводников) не должно превышать Rгр=1,19 Ом – Rтп – Rпк = 1,19 – 0,1 – 0,3 = 0,79 Ом. По таблице 4 находим его длину – 0,79/17,46 = 0,045 км, или 45 метров. Для большинства квартир этой длины бывает достаточно.

При использовании автоматического выключателя С25 для защиты кабеля сечением 2,5 мм2 сопротивление цепи должно быть менее величины 0,76 – 0,4 = 0,36 Ом, что соответствует максимальной длине кабеля 0,36/17,46 = 0,02 км, или 20 метров.

При использовании автоматического выключателя С10 для защиты групповой линии освещения, выполненной кабелем с медными жилами сечением 1,5 мм2 получаем максимально допустимое сопротивление кабеля 1,91 – 0,4 = 1,51 Ом, что соответствует максимальной длине кабеля 1,51/29,1 = 0,052 км, или 52 метра. Если такую линию защищать автоматическим выключателем С16, то максимальная длина линии составит 0,79/29,1 = 0,027 км, или 27 метров.

Как правильно рассчитать нагрузку на кабель

Для того чтобы правильно проложить электропроводку, обеспечить бесперебойную работу всей электросистемы и исключить риск возникновения пожара, необходимо перед закупкой кабеля осуществить расчет нагрузок на кабель для определения необходимого сечения.

Существует несколько видов нагрузок, и для максимально качественного монтажа электросистемы необходимо производить расчет нагрузок на кабель по всем показателям. Сечение кабеля определяется по нагрузке, мощности, току и напряжению.

Расчет сечения по мощности

Для того чтобы произвести расчет сечения кабеля по мощности, необходимо сложить все показатели электрооборудования, работающего в квартире. Расчет электрических нагрузок на кабель осуществляется только после этой операции.

Расчет сечения кабеля по напряжению

Расчет электрических нагрузок на провод обязательно включает в себя расчет сечения кабеля по напряжению. Существует несколько видов электрической сети — однофазная на 220 вольт, а также трехфазная — на 380 вольт. В квартирах и жилых помещениях, как правило, используется однофазная сеть, поэтому в процессе расчета необходимо учитывать данный момент — в таблицах для расчета сечения обязательно указывается напряжение.

Расчет сечения кабеля по нагрузке

Таблица 1. Установленная мощность (кВт) для кабелей, прокладываемых открыто

Сечение жил, мм 2Кабели с медными жиламиКабели с алюминиевыми жилами
220 В380 В220 В380 В
0,52,4
0,753,3
13,76,4
1,558,7
25,79,84,67,9
2,56,6115,29,1
4915712
511198,514
1017301322
1622381628
2530532339
3537642849

Таблица 2. Установленная мощность (кВт) для кабелей, прокладываемых в штробе или трубе

Сечение жил, мм 2Кабели с медными жиламиКабели с алюминиевыми жилами
220 В380 В220 В380 В
0,5
0,75
135,3
1,53,35,7
24,17,235,3
2,54,67,93,56
45,9104,67,9
57,4125,79,8
1011198,314
1617301220
2522381424
35295116

Каждый электроприбор, установленный в доме, имеет определенную мощность — данный показатель указывается на шильдиках приборов или в техническом паспорте оборудования. Чтобы осуществить расчет нагрузок на провод, необходимо подсчитать общую мощность. Производя расчет сечения кабеля по нагрузке, необходимо переписать все электрооборудование, а также нужно продумать, какое оборудование может добавиться в будущем. Поскольку монтаж производится на долгий срок, необходимо позаботиться о данном вопросе, чтобы резкое увеличение нагрузки не привело к аварийной ситуации.

Например, у вас получилась сумма общего напряжения 15 000 Вт. Поскольку в подавляющем большинстве жилых помещений напряжение составляет 220 В, мы рассчитаем систему электроснабжения с учетом однофазной нагрузки.

Далее необходимо продумать, какое количество оборудования может работать одновременно. В итоге у вас получится значительная цифра: 15 000 (Вт) х 0,7 (коэффициент одновременности 70 %) = 10 500 Вт (или 10,5 кВт) — на эту нагрузку должен быть рассчитан кабель.

Также вам необходимо определить, из какого материала будут выполнены жилы кабеля, поскольку разные металлы имеют разные проводящие свойства. В жилых помещениях в основном используют медный кабель, поскольку его проводящие свойства намного превышают показатели алюминия.

Стоит учитывать, что кабель обязательно должен иметь три жилы, поскольку в помещениях для системы электроснабжения требуется заземление. Кроме того, необходимо определить, какой вид монтажа вы будете использовать — открытый или скрытый (под штукатуркой или в трубах), поскольку от этого также зависит расчет сечения кабеля. После того как вы определились с нагрузкой, материалом жилы и видом монтажа, вы можете посмотреть нужное сечение кабеля в таблице.

Расчет сечения кабеля по току

Сначала необходимо осуществить расчет электрических нагрузок на кабель и выяснить мощность. Допустим, что мощность получилась 4,75 кВт, мы решили использовать медный кабель (провод) и прокладывать его в кабель-канале. Расчет сечения кабеля по току производится по формуле I = W/U, где W — мощность, а U — напряжение, которое составляет 220 В. В соответствии с данной формулой, 4750/220 = 21,6 А. Далее смотрим по таблице 3, у нас получается 2,5 мм.

Таблица 3. Допустимые токовые нагрузки для кабеля с медными жилами прокладываемого скрыто

Об эксплуатационных характеристиках кабеля ВВГ 3х1,5

Силовой кабель ВВГ 3х1,5 из меди используется во многих ситуациях, когда необходимо организовать электрическую сеть.

Назначение кабелей ВВГ — передача и распределение электроэнергии в стационарных установках, прокладка сети в различных условиях, включая монтаж на поверхностях сложной формы. Технические характеристики изделий позволяют использовать их при температурах до 70 градусов Цельсия и влажности до 98 процентов. Производство всех марок ВВГ кабеля регулируется государственным стандартом ГОСТ 16442-80.

  1. Виды ВВГ 3х1,5
  2. Отличительные черты
  3. Расшифровка аббревиатуры
  4. Применение ВВГ
  5. Конструкция кабеля
  6. Состав ВВГ на видео
  7. Характеристики ВВГ
  8. Технические характристики ВВГ 0,66 кВ
    1. Длина кабеля в барабане
    1. Длина кабеля ВВГ 1 кВ в барабане
    1. Открытая прокладка
    2. Скрытая прокладка
    3. Размещение ВВГ под землей

    Виды кабеля ВВГ 3х1,5

    Кабель ВВГ 3х1,5 производится в различных изоляционных материалах, каждый из которых непосредственно влияет на особенности использования и технические характеристики:

    • ВВГ 3х1,5 – стандартный провод с ПВХ изоляцией, неустойчивый к горению.
    • ВВГнг 3х1,5 – отличается от предыдущего тем, что внешняя изолирующая оболочка данного провода выполнена из материала с добавлением галогеновых элементов, предотвращающих горение (нг – негорючий).
    • ВВГнг ls 3х1,5 – для производства кабелей этого типа используется безгалогеновый поливинилхлорид, препятствующий распространению дыма.
    • ВВГнг -frls 3х1,5 – разработан для использования в условиях высокой вероятности возгорания.
    • ВВГнг hf 3х1,5 – кабель с поливинилхлоридной наружной изоляцией, выполненной из материала, не распространяющего горение (при групповой прокладке) и не выделяющего опасных газообразных веществ при возгорании.
    • ВВГнг-frhf 3х1,5 – негорючий кабель из ПВХ, не распространяющего горение при групповой прокладке и не выделяющего вредных газов и дыма при возгорании.

    Безгалогеновый поливинилхлорид, используемый для производства проводов ВВГнг ls и ВВГнг-frls, является огнестойким материалом. Он имеет такие же изоляционные характеристики, как стандартный ПВХ, но при этом слабо подвержен горению, практически не распространяет его и выделяет минимальное количество дыма.

    Отличительные черты кабеля ВВГ 3х1,5

    Главное направление, где используется данный кабель, – снабжение электрической энергией различные классы потребителей, включая объекты и здания. Помещение, где должен проводиться электромонтаж может быть, как открытого, так и закрытого типа. Высокий уровень пожаробезопасности позволил кабельному изделию достаточно широко распространиться.

    В чем заключается отличие кабеля ВВГ 3×1,5 от провода ВВГнг 3х1,5?

    При одиночной укладке электротехнических токопроводящих изделий не происходит их возгорания. При совместной укладке ВВГнг с другими проводами, с целью предотвратить горение кабеля, он обрабатывается специальным антивоспламенительным раствором. Об этом свидетельствует обозначение «НГ». Для базового же кабеля ВВГ предусмотрена обычная поливинилхлоридная изоляция, потому для него не характерно наличие самозатухающих и огнезащитных свойств.

    Расшифровка кабеля ВВГ 3х1,5 (ВВГнг 3х1,5 и ВВГнг(А) 3х1,5 и других)

    Его маркировка говорит о наличии материала изоляции поливинилхлорида для трех медных токопроводящих жил и об общей оболочке из него же. Также речь идет об отсутствии дополнительного защитного покрова.

    • В – ПВХ-пластикат в качестве изоляционного материала.
    • В – оболочка из ПВХ-пластиката.
    • Г – нет защитной бронированной оболочки.
    • нг – изоляция с повышенным уровнем пожаробезопасности.
    • (А) – при укладке группой не возгораются, индекс означает «не распространяющий горение по категории А».
    • 3 – число жил.
    • 1,5 – сечение жил, мм2. Означает поперечное сечение медной жилы, причем именно это значение является наиболее популярным, но есть и другие, вплоть до 240 квадратных миллиметров.
    • ls – означает Low Smoke, препятствует распространению дыма.
    • fr – означает Fire Resistance, наличие термического барьера в виде обмотки проводника двумя слюдосодержащими лентами
    • hf – отсутствие галогенов
    • frls – аббревиатура означает Fire Resistance Low Smoke и говорит о том, что при возгорании провод выделяет минимальное количество газа и дыма, а также не распространяет огонь при групповой прокладке.
    • frhf – кабельные изделия огнестойкие, не распространяющие горение при групповой прокладке и не выделяющие коррозионно-активных газообразных продуктов при горении и тлении;

    Дополнительно в обозначении возможны следующие индексы:

    • «ок», «ож» – однопроволочная (монолитная) конструкция;
    • «мк», «мж» – многопроволочная конструкция.
    • 0,66 – рабочее напряжение, кВ.
    • 1,0 – рабочее напряжение, кВ.

    Где применяется?

    Силовой кабель ВВГ 3х1,5 мм2 позволяет передавать и распространять электроэнергию в стационарных агрегатах под напряжением до 1 кВ промышленной частоты. Нагрузка по току составляет не более 27 А.

    С помощью данного проводника прокладываются линии, где разность уровней высот не ограничена, включая вертикальные виды трасс.

    Проводник ВВГ находит применение в домах, квартирах, офисах, цехах – в электрических системах на переменном напряжении при заземленном или изолированном режиме заземления нейтрали. При однофазном замыкании (ОЗЗ) на землю длительность работы составляет менее 8 часов. Суммарная длительность эксплуатации при ОЗЗ не больше 125 часов в течение года. Допускается укладка группой (в виде пучков) в открытых объектах (эстакадах, галереях). По последним требованиям пожаробезопасности не рекомендуется прокладывать ВВГ на закрытых объектах.

    Составные части проводника ВВГ 3х1,5

    1. Токоведущая жила выполнена из меди. Одно- или многопроволочное исполнение. Имеет круглую форму жил. Согласно ГОСТу 22483 имеет класс I или II.
    2. ПВХ-пластикат — изолирующий материал. Изоляция каждой жилы имеет свое цветовое обозначение. Для нулевой жилы применяется голубой цвет. Заземляющие жилы выполнены жёлто-зелёным цветом. Толщина изоляции определяется сечением проводника.
    3. Скручивание. Выполняется для многожильного изолированного проводника. Сечение жил ВВГнг(А) 3×1,5 с двухжильным исполнением одинаковое. Для трехжильных и более проводников рабочие жилы имеют одно сечение, кроме заземляющих или нулевых жил с меньшим сечением.
    4. Внешняя оболочка из ПВХ-пластиката.

    Видео о составе кабеля ВВГ

    Характеристики кабеля ВВГ 3х1,5

    • Максимальная нагрузка или подключаемая мощность на кабель ВВГ 3×1,5 при прокладке внутри помещения в однофазной сети 220 В достигает 4,1 кВт, для трехфазной сети 380 В этот показатель уже может быть равным 10,5 кВт (имеется в виду общая мощность всех подключаемых к сети приборов).
    • Такой кабель способен выдерживать в течение 10 минут напряжение до 3,5 кВ при частоте 50 Гц.
    • Сопротивление изоляции у ВВГ 3х1,5 при напряжении 1000 Вольт может достигать значений от 7 до 12 мОм/км.
    • При коротком замыкании продолжительностью 4 секунды температура жил поднимается до значения 160 градусов Цельсия.
    • Во время прокладки сети допускается радиус изгиба кабеля, равный не менее 7,5 диаметров.
    • Минимальный срок работы такого изделия составляет 20 лет, а гарантийный — 60 месяцев.

    Технические данные кабеля ВВГ 3х1.5 — 0,66 кВ

    • теоретический вес 1 км: 99,00кг
    • диаметр поперечного сечения: 8,0мм
    • минимальный радиус изгиба: ож*: 80мм; мп*: 60мм
    • номинальная толщина изоляции жил: 0,6мм
    • эл. сопротивление изоляции на 1 км и 20оС: 12МОм
    • допустимая токовая нагрузка: на воздухе: 21А; в земле: 28А
    • допустимый ток короткого замыкания: 0,17кА

    Длина кабеля при намотке на деревянные барабаны в зависимости от диаметра кабеля:

    № Барабана6810121416171820222526
    Длина (м)6458103140

    Технические данные провода ВВГ 3х1.5 — 1 кВ

    • теоретический вес 1 км: 111,00кг
    • диаметр поперечного сечения: 9,4мм
    • минимальный радиус изгиба: ож*: 94мм; мп*: 70мм
    • номинальная толщина изоляции жил: 0,8мм
    • эл. сопротивление изоляции на 1 км и 20оС: 12МОм
    • допустимая токовая нагрузка: на воздухе: 21А; в земле: 28А
    • допустимый ток короткого замыкания: 0,17кА

    Возможна намотка в бухты по 200 и 400 м.

    Строительная длина: 450 м

    Технические характеристики кабеля ВВГнг 3х1,5:

    Тип климатаУХЛ
    Категория помещенияI и V согласно ГОСТ 15150-69
    Температурные пределы±50˚С
    Прокладкапри t

    ВВГ 3х1.5ВВГ 3х150+1х70ВВГ 3х2.5+1х1.5ВВГ 3х35+1х16ВВГ 3х6+1х4
    ВВГ 3х10ВВГ 3х16ВВГ 3х240ВВГ 3х4ВВГ 3х70
    ВВГ 3х10+1х6ВВГ 3х16+1х10ВВГ 3х240+1х120ВВГ 3х4+1х2.5ВВГ 3х70+1х25
    ВВГ 3х120ВВГ 3х185ВВГ 3х25ВВГ 3х50ВВГ 3х95
    ВВГ 3х120+1х70ВВГ 3х185+1х95ВВГ 3х25+1х16ВВГ 3х50+1х25ВВГ 3х95+1х50
    ВВГ 3х150ВВГ 3х2.5ВВГ 3х35ВВГ 3х6

    Подбор кабеля ВВГ по предельно допустимому току

    При подборе сечения кабеля более правильная методика — по максимальному току. В связи с этим нормируется такая характеристика как длительно допустимый ток. Он зависит от количества и сечения жил, а также от способа прокладки — открытой или закрытой.

    Сечение жилДлительно допустимы ток
    с двумя основными жиламис тремя основными жиламис четырьмя основными жилами
    1,5 мм224 А21 А19 А
    2,5 мм233 А28 А26 А
    4 мм244 А37 А34 А
    6 мм56 А49 А45 А
    10 мм76 А66 А61 А
    16 мм101 А87 А81 А
    25 мм134 А115 А107 А
    35 мм208 А177 А165 А

    Как определить сечение провода?

    Во всех расчетах фигурирует сечение кабеля. По диаметру его определить проще, если применять формулы:

    • S = πD²/4;
    • D = √(4×S/π),

    В многожильном проводе сначала надо подсчитать количество проволочек (N). Затем измеряется диаметр (D) одной из них, после чего определяется площадь сечения:

    Многожильные провода применяются там, где требуется гибкость. Более дешевые цельные проводники используются при стационарном монтаже.

    Производители ВВГ

    Теперь рассмотрим не менее важный вопрос: от какого завода изготовителя вам лучше выбрать силовой кабель ВВГ. Наиболее качественную продукцию по оптимальной цене выпускают следующие заводы России:

    • Севкабель;
    • Камкабель;
    • Кольчугинский завод;
    • Энергокабель;
    • Псковкабель;
    • Подольсккабель;
    • Москабель.

    Если вы сомневаетесь в заявленных и фактических характеристиках кабельной продукции от этих производителей, можно самостоятельно определить сечения проводов в магазине.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector