Gutdver.ru

Отделка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коаксиальные и высокочастотные кабели связи — Измерения и испытания кабелей

Коаксиальные и высокочастотные кабели связи — Измерения и испытания кабелей

Измерения и испытания кабелей связи проводят для проверки соответствия их электрических, конструктивных и механических параметров нормируемым значениям, указанным в ГОСТ и ТУ на конкретный тип кабеля.
Электрические измерения и испытания выполняют на кабельных заводах, в процессе прокладки и монтажа, а также на смонтированных элементарных кабельных участках. Для проверки качества изготовляемых кабелей на кабельных заводах на соответствие требованиям ГОСТ и ТУ установлены приемосдаточные, периодические и типовые испытания.

Приемосдаточные испытания проводят на каждой строительной длине кабеля. Периодические испытания кабелей проводят на нескольких строительных длинах, прошедших приемосдаточные испытания. Типовые испытания кабелей на соответствие требованиям ГОСТ и ТУ проводят по программе, утвержденной в установленном порядке, оговариваемой в ГОСТ и ТУ. Результаты испытания оформляют протоколом, который предъявляют потребителю по его требованию.
Объем и виды измерений испытаний кабелей на заводах указаны в ГОСТ и ТУ на конкретный тип кабеля. При приемосдаточных измерениях и испытаниях на кабельных заводах проверяют:
конструктивные и механические характеристики; электрическое сопротивление и омическую асимметрию цепи; электрическое сопротивление изоляции защитных покровов; изоляцию жил (проводников) напряжением; рабочую емкость симметричных пар;
емкостные связи и емкостную асимметрию симметричных кабелей; переходное затухание на ближнем конце и защищенность цепей на дальнем конце симметричных кабелей в нормируемом ГОСТ и ТУ диапазоне частот;
переходное затухание на ближнем конце между парами соседних четверок коаксиальных кабелей типа КМ-4 в диапазоне частот 10. 110 кГц (система передачи К-24Р) или в диапазоне частот 20. 600 кГц (система передачи ИКМ-30) при скорости передачи 2,048 Мбит/с;
коэффициент отражения (внутренние неоднородности волнового сопротивления) коаксиальных пар;
концевые значения волнового сопротивления коаксиальных пар.
При периодических испытаниях проверяют следующие параметры: переходное затухание между коаксиальными парами в нормируемом диапазоне частот;
коэффициент затухания коаксиальных пар; коэффициент затухания симметричных пар; затухание отражения коаксиальных пар;
коэффициент защитного действия металлических покровов кабеля; механическую устойчивость конструкции кабеля после двукратной перемотки его с барабана на барабан;
электрическое сопротивление металлических покровов постоянному ток; металлическую оболочку на изгиб и сплющивание;
защищенность на дальнем конце при испытательном симметрировании .пар внутри четверок.
Измерения коэффициента затухания, переходного затухания на ближнем конце и защищенности на дальнем конце проводят в диапазоне частот, указанном в ГОСТ и ТУ на конкретный тип кабеля.
Виды и объем периодических испытаний устанавливаются ГОСТ и ТУ на конкретный тип кабеля.
Испытания конструктивных элементов заключается в: измерении диаметра токопроводящих жил (проводников), толщины оболочек и экранов, размеров элементов защитных покровов, наружных диаметров кабелей и строительных длин с помощью мерной ленты;
проверке числа пар, четверок, отдельных жил и расположении конца А. на барабане;
проверке и испытании свинцовой, алюминиевой и стальной оболочек;
проверке и испытании защитных покровов.
При измерениях необходимо учитывать температуру кабеля. Погрешность применяемых измерительных приборов не должна превышать значений, приведенных в табл. 12.1.
Приборы, применяемые при электрических измерениях, проверяют в соответствии с действующим законодательством о государственной и внутриведомственной поверке средств измерений.

Электрические измерения и испытания необходимо производить со строгим соблюдением «Правил техники безопасности при работах на кабельных линиях связи и проводного вещания» (М., Радио и связь, 1985).

Таблица 12.1
Нормы основных погрешностей измерительных приборов

Конструктивные измерения и механические испытания

Конструктивные размеры элементов кабелей определяют по ГОСТ 12177-79.

Номинальные наружные размеры кабельных изделий и их элементов измеряют микрометрами типов МК и МР (ГОСТ 4381—87), а также штангенциркулями типов ШЦ-1, ШЦ-11 и ШЦ-111 (ГОСТ 166—80).
Длину кабеля определяют с помощью рулетки измерительной металлической (ГОСТ 7502—89), линейки металлической (ГОСТ 427—75), измерительного устройства автоматического измерения с погрешностью не более ±1% или мерной ленты, обеспечивающей измерение длины с погрешностью не более ±0,5%.
Толщину металлических оболочек измеряют микрометрами типов МТ, МК и МВТ (ГОСТ 6507—78). Толщину пластмассовых оболочек, шлангов и изоляции измеряют стенкомерами индикаторными С25 и С10А (ГОСТ 11358—89), микроскопом инструментальным ММИ (ГОСТ 8074—82) или лупой измерительной общего назначения (ГОСТ 25706—83).

Читайте так же:
Как подключить свет от двух выключателей

Испытание металлических оболочек на растяжение проводят по ГОСТ 2464—82, а толщину оболочки и размеры гофра — по ГОСТ 12177—79.

Герметичность оболочек, конструкция которых позволяет производить подачу воздуха под оболочку, проверяют после подачи с одного конца кабеля сухого воздуха с относительной влажностью не более 20% под давлением не менее 0,3 МПа и не более 0,5 МПа. Кабель считается герметичным, если после выравнивания давления в течение 3 ч на другом конце кабеля при неизменной температуре давление остается постоянным. Манометры для измерения давления должны соответствовать классу 1,0 (ГОСТ 2405—88) с диапазоном показаний 0 . 0,6 МПа.
Испытание свинцовой и алюминиевой оболочек диаметром более 10 мм на растяжение проводят по ГОСТ 12174—76. Испытание проводят на отрезке оболочки длиной 150 мм при насадке на конус; при этом торцы образца должны быть перпендикулярны оси кабеля. При испытании применяют стальной конус с поверхностью, имеющей шероховатость 1,25. 1,0 мкм и отношением диаметра основания к высоте 1 :3. Испытание заключается в постепенном растяжении оболочки в радиальном направлении при насадке на конус с помощью специального пресса или вручную легкими ударами. Поверхность конуса должна быть смазана техническим маслом. Испытание считается положительным, если образец оболочки выдержит, не растрескиваясь, растяжение до величины, указанной в соответствующих ГОСТ или ТУ на конкретные типы кабелей.
Испытание металлической оболочки (без защитного покрова) на изгиб производится следующим образом. Образец кабеля длиной не менее 60-кратного наружного диаметра кабеля обматывают вокруг цилиндра. При этом диаметр цилиндра зависит от типа и диаметра оболочки кабелей связи следующим образом:

Кабели в свинцовой оболочке. 25D’
Кабели в гладкой алюминиевой оболочке диаметром D:
до 30 мм. 30D
>30 мм. 40D
Кабели в гофрированной алюминиевой оболочке диаметром D:
до 30 мм . 15D
>30. 40 мм. 20D
>40 . 50 мм. 25
>50 мм. 30
Кабели с коаксиальными парами. 35D

Затем кабель сматывают с цилиндра и выпрямляют. Далее образец, поворачивают вокруг своей продольной оси и опять наматывают так, чтобы он соприкасался с цилиндром образующей, смещенной на 180°, после этого’ его опять сматывают и выпрямляют. Кабели со свинцовыми и гофрированными алюминиевыми оболочками подвергают двойному изгибу 3 раза, а кабели с гладкими алюминиевыми оболочками — 2 раза. Образец кабеля считают выдержавшим испытание, если после испытания на изгиб на оболочке образца не обнаружено трещин и он выдержал испытание на герметичность избыточным давлением 0,3 . 0,5 МПа.

  1. Испытание защитных покровов проводят по ГОСТ 7006—72, а проверку конструктивных элементов защитных покровов и их размеров — по ГОСТ 12177—79. Наличие покрытия на ленточной броне должно быть проверено визуально.

По ГОСТ 7006—72 проверяют: качество наложения всех элементов, защитного покрова, плотность прилегания пластмассового шланга, герметичность пластмассового шланга, содержание нафтената меди в кабельной пряже, вытекание битумного состава, холодоустойчивость покровов, нераспространение горения, электрическую прочность подушки защитных покровов, истирание, изгиб, разрывную прочность и относительное удлинение шлангов.

  1. Испытание механической устойчивости конструкции кабеля проводят на нескольких строительных длинах в объеме, предусмотренном ГОСТ и ТУ на конкретные типы кабелей. Это испытание проводят путем двукратной перемотки кабеля с барабана на барабан, диаметры шейки которых должны соответствовать диаметру цилиндра, указанному выше. После двукратной перемотки кабеля электрические параметры должны соответствовать данным измерений до перемотки.

Измерение электрического сопротивления токопроводящих жил (проводников)

Электрическое сопротивление токопроводящих жил (проводников) измеряют согласно ГОСТ 7229—76 мостовым методом с использованием одинарного или двойного- (при измерении сопротивления менее 100 Ом) моста.
Схема измерения с помощью одинарного моста приведена на рис. 12.1. Жилы измеряемой цепи на одном конце подключают к клеммам прибора, а на другом соединяют между собой, образуя шлейф проводов. С помощью регулируемого сопротивления R0 уравновешивают мост. Если R1=R2, то
Электрическое сопротивление экрана и металлической оболочки измеряют так же, как сопротивление токопроводящих жил; при этом в качестве второго проводника шлейфа берут измеренную жилу.

Рис. 12.1. Схема измерения сопротивления токопроводящих жил постоянному току
Для измерения электрического сопротивления на практике нашли широкое применение переносные кабельные приборы (мосты) типа ПКП-2М, ПКП-3, ПКП-4 и ПКП-5, пределы измерений которыми приведены в табл. 12.2.
Измерительное напряжение на выходе приборов должно быть от 100 до 500 .В. Измеренное значение электрического сопротивления должно быть пересчитано на температуру 20° С по формуле
(12.1)
_______ Пределы измерения приборами типа ПКП____________ Таблица 12.2

где R20 — электрическое сопротивление при температуре 20° С, Ом; 4 — температура кабеля при измерении, °С; Rt — сопротивление, измеренное при температуре 4; а— температурный коэффициент сопротивления, 1/°С.

Читайте так же:
Как соединять свет с выключателем

Измерение омической асимметрии


Рис. 12.2. Схема измерения омической асимметрии цепи
Омическую асимметрию цепи, т. е. разность сопротивлений жил в рабочей симметричной паре, измеряют мостовым методом по схеме, приведенной: на рис. 12.2. На противоположном конце цепи кабеля жилы соединяют между собой и заземляют. С помощью регулируемого сопротивления R0 мост уравновешивается.
Отсчет омической асимметрии при R1 = R2 производят так же, как при измерении электрического сопротивления токопроводящих жил. Если мост не уравновешивается, то меняют местами жилы измеряемой цепи на клеммах прибора и повторяют измерения.
Наиболее целесообразно измерять омическую асимметрию с помощью переносных кабельных мостов ПКП-3, ПКП-4 и ПКП-5 и рассчитывают по формуле
∆R = Ra-Rб, (12.2)
где ∆R — омическая асимметрия, Ом; Ra — электрическое сопротивление жилы а, Ом; Re — электрическое сопротивление жилы б, Ом.
12.5. Измерение электрического сопротивления изоляции
Электрическое сопротивление изоляции жил, проводников и защитных полиэтиленовых шлангов при напряжении постоянного тока измеряют на заводах согласно ГОСТ 3345—76. Сопротивление изоляции полиэтиленовых и поливинилхлоридных шлангов измеряют после пребывания кабеля в воде в течение часа.
Измерения проводят с помощью измерительных схем и приборов, обеспечивающих погрешность измерения не более ±2,5%. Этим требованиям удовлетворяют переносные кабельные приборы ПКП-2М, ПКП-3, ПКП-4 и ПКП-5, а также мегомметр типа МЕГ-9. Измерительное напряжение на выходе указанных кабельных приборов должно быть 100. 500 В после одноминутного прохождения тока. Пределы измерений Rиз этими приборами указаны в табл. 12.2.
Мегометр МЕГ-9 позволяет измерять электрическое сопротивление изоляции в пределах 1,0. 100 МОм. Шкала прибора имеет пять пределов: «х 1» (1,0. 10 МОм); «х 10» (10. 100 МОм); «х 102» (100. 1000 МОм); «х 103» (1000. 10 000 МОм) и «х 104» (10 000. 100 000 МОм).
Результаты измерения электрического сопротивления изоляции кабелей с бумажной и кордельно-бумажной изоляцией Rиэм должны быть приведены к температуре 20° С по формуле
(12.3)
где Rh2o — электрическое сопротивление изоляции при температуре 20° С, МОм; Rизм — измеренное электрическое сопротивление изоляции при температуре измерения t, МОм; аи—температурный коэффициент сопротивления изоляции, равный для бумажной и кордельно-бумажной изоляции —0,06;
— поправочный температурный коэффициент, значения которого при аи = — 0,06 приведены в табл. 12.3.
Таблица 12.3
Значения поправочного температурного коэффициента k

ИЗМЕРЕНИЕ ЦЕПЕЙ СВЯЗИ НА ПОСТОЯННОМ ТОКЕ

На различных этапах строительно-монтажных и эксплуатацион­ных работ производят измерения и испытания следующих электриче­ских параметров цепей связи постоянным током: омической асиммет­рии, электрического сопротивления шлейфа, электрического сопротивления изоляции проводов, электрической емкости цепей и элек­трической прочности изоляции. Необходимо начинать измерения с определения значения омической асимметрии потому, что одной из причин ее увеличения является плохой контакт в месте со­единения проводов. При измерении омической асимметрии мост пи­тается небольшим напряжением, недостаточным для создания элек­трического пробоя в месте плохого контакта. Следовательно, такое повреждение может быть сразу зафиксировано. Если же измерения начать с определения электрического сопротивления изоляции, емко­сти или с испытания электрической прочности изоляции, то под дей­ствием высокого напряжения, применяемого при этих измерениях, в месте плохого контакта может произойти электрический пробой, со­провождаемый временным восстановлением контакта. Следователь­но, наличие плохого контакта в проводах не будет зафиксировано.

Измерения в зависимости от типа линии и цели подразделяются на приемо-сдаточные, профилактические, аварийные и контрольные.

Строительно-монтажные измерения проводятся с целью кон­троля качества работ на всех этапах строительства и доведения электрических параметров цепей до установленных норм.

Приемо-сдаточные измерения проводятся в процессе работы ко­миссий по приемке законченных строительством или реконструируе­мых линий связи с целью проверки качества выполненных работ и соответствия электрических параметров линейных сооружений нор­мам.

Читайте так же:
Выключатель для светодиодной ленты 220 вольт

Профилактические (плановые) измерения проводятся периодиче­ски через определенные промежутки времени, установленные руководящими документами Министерства связи Республики Беларусь с целью проверки соответствия нормам электрических параметров существующих линий связи.

Аварийные измерения проводятся на неисправных цепях с целью определения характера повреждения и расстояния до места повреж­дения.

Контрольные измерения производятся после окончания ремонтно-восстановительных работ с целью проверки электрических параметров восстановленной цепи.

Одним из важнейших параметров цепей связи является электри­ческое сопротивление проводов. В проводах линий связи происходит основная потеря мощности электрических сигналов. При расчете нормальных режимов работы приемных устройств систем связи учи­тывают потери в проводах цепи. Но если электрическое сопротивле­ние проводов по какой-либо причине окажется больше расчетного, качество работы приемного устройства может значительно ухудшить­ся. Для цепей кабельных линий связи нормируется не электрическое сопротивление отдельных проводов, а электрическое сопротивление шлейфа, составленного из двух проводов цепи.

Рисунок 4.1 – Схема измерения сопротивления шлейфа

Электрическим сопротивлением шлейфа (Rшл) называется сумма электрических сопротивлений проводов двухпроводной цепи посто­янному току

Между идеальными цепями линий связи взаимные влияния от­сутствуют, но создать такие цепи практически невозможно. Если асимметричность цепи невелика, то и взаимные влияния незначи­тельны. Вследствие возможной неоднородности материалов, некото­рого отличия диаметров проводов, коррозии, существенных повреж­дений изоляции проводов или плохих контактов в местах спаек или других причин увеличивается асимметричность цепи и, как следст­вие, увеличивается взаимное влияние между цепями. Для оценки сте­пени асимметричности цепи введено понятие омической асимметрии.

Рисунок 4.2 – Схема измерения сопротивления омической асимметрии

Омической асимметрией (ΔR) называется разность электрических сопротивлений проводов двухпроводной цепи постоянному току

Для уменьшения потерь мощности при передаче электрических сигналов по проводным линиям связи необходимо обеспечить мини­мальную утечку тока с проводов через изоляцию. Для оценки степени утечки тока введено понятие электрического сопротивления изоля­ции.

ПОРЯДОК ПРОВЕДЕНИЯ ОБРАБОТКИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Сравнивая результаты измерений с нормами, нужно сделать за­ключение об электрическом состоянии цепи. Нормы большинства электрических характеристик установлены для однородной цепи длиной 1 км при температуре t = +20°С, а результаты измерений получают для цепи, имеющей какую-то конкретную длину l при какой-то конкретной температуре окружающей среды. Кроме того, измеряемая цепь может состоять из участков кабеля с разными диаметрами жил (неоднородная цепь).

Порядок обработки результатов измерений следующий:

I) Измеренное электрическое сопротивление шлейфа приводят к t = +20°С по формуле:

где а — температурный коэффициент сопротивления провода, равный для медных проводов 0,0039, а для алюминиевых проводов 0,004;

t — температура грунта на глубине залегания кабеля, при которой проводились измерения (значение температуры t указано на лицевой панели макета), °С

2) Рассчитывают километрическое сопротивления шлейфа:

По таблице 1 по диаметру жилы определяем норму и сравниваем с результатами расчетов. Если rшл табл ≥ rшл расч, то цепь в норме по сопротивлению шлейфа.

Таблица 1 – Нормы километрического сопротивления шлейфа

Диаметр жилы, d, мм0,320,40,50,70,80,91,01,21,4
Сопротивление цепи rшл, Ом/км432±26278±18180±1290±672,257,047,031,923,8

3) Измеренное электрическое сопротивление изоляции Rиз жил кабеля приводим к температуре t = +20°С по формуле:

где: αиз — температурный коэффициент сопротивления изоляции, равный 0,06 для кабелей с бумажной изоляцией и 0,001 — для кабелей с полистирольной и полиэтиленовой изоляцией.

4) Определяется километрическое сопротивление гиз. Полу­ченные величины сравниваются с электрическими нормами.

По таблице 2 по типу кабеля определяем норму и сравниваем с результатами расчетов. Если rиз табл ≥ rшл расч, то цепь в норме по со­противлению изоляции.

Электрическое сопротивление изоляции каждой жилы по отно­шению ко всем остальным, соединённым между собой и с заземлён­ной металлической оболочкой, для смонтированного по длине кабеля, но не включенного в оконечные устройства, при t = +20 °С должно быть не меньше величин, приведенных в таблице 2:

Таблица 2 – Нормы километрического сопротивления изоляции

Тип линииМаксимально допустимая величина, МОмМинимально допустимая величина, МОм
Кабели ТГ, ТБ Кабели ТПП, ТПВ Кабели ТЗГ, ТЗБ Абонентская проводка Абонентская линия с включенным аппаратом

5) Определяется общая рабочая ёмкость по формуле:

где Саз, Cбз Саб — измеренные значения емкостей, нФ.

Читайте так же:
Кабель канал для проводов коричневый

6) Определяем километрическую рабочую ёмкость Ср цепи по формуле:

где Ср изм — измеренное значение рабочей емкости цепи, нФ.

По таблице 3 определяем норму и сравниваем со своим результа­том:

Тип изоляцииСреднее значение рабочей емкости
Корднльно-бумажная Кордельно-полистирольная Кордельно-стирофлексная Сплошная полиэтиленовая26,5 нФ 24,5 нФ 23,5 нФ 34,5 нФ

7) Определяем омическую асимметрию на измеряемый участок кабельной линии по формуле:

Рассчитанное значение ΔR будем считать нормой. Соответствен­но измеренное значение должно всегда быть меньше этого значения.

На основании всех этих расчетов можно сделать вывод о состоя­нии кабельной линии.

Что такое сопротивление изоляции кабеля и его нормы

Сопротивление изоляции — один из главнейших параметров кабелей и проводов, ведь в ходе эксплуатации силовые и сигнальные кабели всегда подвержены различным внешним воздействиям. Кроме того, помимо внешних воздействий, постоянно присутствует и влияние жил внутри кабеля друг на друга, их электрическое взаимодействие, что непременно приводит к появлению утечек. Добавив сюда факторы, влияющие на качество изоляции, мы получим более цельную картину.

По этим причинам кабели всегда защищаются диэлектрической изоляцией, к которой относятся: резина, пвх, бумага, масло и т. д. — в зависимости от назначения кабеля, от рабочего напряжения, от рода тока и т. д. Так, например, подземные распределительные телефонные линии выполняются бронированным лентой кабелем, а некоторые телекоммуникационные кабели заключают в оболочку из алюминия для защиты от внешних токовых помех.

Что такое сопротивление изоляции кабеля и его нормы

Что касается диэлектрических свойств изоляции, то не только они влияют на выбор конкретного материала для того или иного кабеля. Не менее важна термостойкость: резина более стойка к высоким температурам, чем пластмасса, пластмасса — лучше чем бумага и т.д.

Так, изоляция кабеля — это защита жил от их влияния друг на друга, от короткого замыкания, от утечек, и от внешних воздействий со стороны окружающей среды. А сопротивление изоляции определяется величиной оного между жилами и между жилой и наружной поверхностью изолирующей оболочки (или между жилой и экраном).

Безусловно материал изоляции в процессе эксплуатации кабеля теряет свои былые качества, стареет, разрушается. И одним из показателей этих неблагоприятных изменений является снижение сопротивления изоляции постоянному току.

Измерение сопротивления изоляции кабеля

Сопротивление изоляции постоянному току для различных кабелей и проводов нормируется согласно их ГОСТ, что указывается в паспорте на конкретную кабельную продукцию: в лабораторных условиях фиксируется нормальное сопротивление изоляции при температуре окружающей среды в +20°C, после чего сопротивление приводится к длине кабеля в 1 км, что и указывается в технической документации.

Так, НЧ-кабели связи имеют минимальное нормируемое сопротивление 5 ГОм/км, а коаксиальные — до 10 ГОм/км. При замерах учитывают, что это приведенная длина для 1 км кабеля, соответственно кусок вдвое длиннее будет иметь вдвое меньшее сопротивление изоляции, а кусок вдвое более короткий — вдове большее. К тому же температура и влажность при замерах оказывают существенное влияние на текущее значение, так что необходимо вводить поправки, специалисты это знают.

Говоря о силовых кабелях, учитывают положения ПУЭ п. 1.8.40. Так, силовым кабелям цепей вторичной коммутации и осветительных электропроводок с напряжением до 1000 В приписывается норма от 0,5 МОм для каждой жилы между фазными проводами и между фазным и нулевым проводом и проводом защитного заземления. А для линий с напряжением от 1000 В и выше — норма сопротивления не указывается, но указывается ток утечки в мА.

Сопротивление изоляции силового кабеля

Проводятся специальные испытания, при которых нормируется напряжение проверки. В соответствии с родом тока испытательного оборудования и назначением проверяемого кабеля, с учетом материала его изоляцией — выставляют испытательное напряжение на мегаомметре. Так при помощи мегаомметра и оценивают качество изоляции высоковольтных кабелей.

Сопротивление изоляции в 1 МОм на киловольт рабочего напряжения кабеля считается приемлемым, то есть для кабеля, работающего под напряжением в 10 кВ сопротивление в 10 МОм будет принято нормальным по итогу испытаний мегаомметром с проверочным напряжением 2,5 кВ.

Измерения сопротивления изоляции проводят регулярно мегаомметром: на мобильных установках — раз в полгода, на объектах повышенной опасности — раз в год, на остальных объектах — раз в три года. Данными измерениями занимаются квалифицированные специалисты. В результате измерений специалистом составляется документ — акт установленного Ростехнадзором образца.

По итогу проверки делается заключение о том, нуждается ли объект в ремонте или его работоспособность соответствует требованиям проверки. Если требуется ремонт — проводят ремонт с целью восстановления сопротивления изоляции до нормы. Протокол составляется и по итогам ремонта, после очередных замеров мегаомметром.

Лабораторная работа № 1

Ознакомиться с прибором для измерения электрических параметров линий связи, применяемых в телефонии. Изучить методику измерения такого параметра кабеля связи как омическое сопротивление (). Сравнить измеренное и номинальное значение омического сопротивления для исследуемого типа кабеля.

2. Задание на лабораторную работу

2 1 Задание по теоретической части

Пройти инструктаж по технике безопасности пользования прибором ПКП-4.

Изучить назначение, конструкцию, а также принципы работы ПКП-4. Изучить принципиальные схемы для измерения основных электрических параметров линии связи.

Ознакомиться с методикой расчета значения омического сопротивления двухпроводной цепи при постоянном токе.

2.2 Задание по практической части.

Измерить, с помощью измерительного прибора ПКП-4, омическое сопротивление для определенного типа кабеля.

Сравнить измеренное и номинальное значение омического сопротивления и сделать выводы.

Рассчитать значение омического сопротивления двухпроводной цепи при постоянном токе. Сравнить полученные результаты с измеренным значением и номинальным. Сделать выводы о точности предложенной методике расчета.

3. Описание лабораторной установки

В состав лабораторной установки входят модель линии связи (кабель типа ТПП 252), измерительный прибор ПКП-4, комплект измерительных шнуров.

4. Методические указания к выполнению работы.

4.1 Методические указания к изучению теоретической части

Указание мер безопасности при работе с прибором ПКП-4

К работе с ПКП-4 допускаются лица, ознакомившиеся с техническим описанием прибора, инструкцией по эксплуатации и имеющие допуск к работе с электроустановками на напряжение до 1000 В.

В процессе измерения нельзя прикасаться к токоведущим элементам ПКП-4 измеряемого объекта.

При работе от сети переменного тока подключите защитное заземление к клемме «».

Перед присоединением измерительных проводов к линии проверьте отсутствие напряжения в ней.

После окончания измерений переключатель питания установите в положение ОТКЛ.

Перед проведением измерений все кнопки должны быть в отжатом состоянии.

Конструкция измерительного прибора ПКП-4. Принципиальные схемы для измерения омического сопротивления линии связи.

Измерительный прибор ПКП-4 представляет собой универсальное измерительное устройство, включающее в себя комплекс схем, реализуемых на основе мостов постоянного и переменного токов, компенсационных методов и методов вольтметра-амперметра. Применяется для проведения измерений первичных параметров кабельной продукции при строительствах новых линий и эксплуатации уже готовой сети. Так же прибор позволяет определить расстояние до места понижения электрического сопротивления изоляции жил, до места обрыва линии, до места перепутывания а также омическую асимметрию жил. прибор состоит из следующих блоков: магазин сопротивлений, блок источников измерительных напряжений, усилитель постоянного тока, усилитель переменного тока.

Принципиальная схема измерения омического сопротивления жил представлена на рис.1.1.

Сопротивление цепи постоянному току прямо пропорционально удельному сопротивлению материала проводника и его длине и обратно пропорционально площади поперечного сечения. При передаче по цепи переменного тока вследствие поверхностного эффекта и эффекта близости ток протекает лишь по внешней поверхности проводника. В этом случае говорят об активном сопротивлении цепи, связанном с действительным (активным) поперечным сечением, по которому протекает ток.

Рис.1.1 — Принципиальная схема измерения омического сопротивления жил

Сопротивление цепи характеризует потери энергии в проводах цепи. На практике нормируется сопротивление постоянному току цепи линии связи протяженностью 1 км. Нормы на сопротивление одного километра цепи различных типов полевых кабелей связи приведены в таблице (Приложение А). Если при измерении результат не соответствует норме и очевидна правильность указанной длины линии, необходимо провести измерения по отысканию места повреждения.

Методика расчета омического сопротивления жил постоянному току.

Сопротивление двухпроводной цепи при постоянном токе

, ом/км, (1.1)

где — коэффициент укрутки, значения которого в зависимости от диаметра кабеля приведены в таблице (Приложение Б).

— удельное сопротивление, ;

–диаметр проводника, мм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector