Gutdver.ru

Отделка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как регулировать ток в лампе накаливания

Как регулировать ток в лампе накаливания

Казалось бы, бред. Сопротивление лампы измеряется в целых омах, а сопротивление АКБ составляет десятые и сотые доли ома. Последовательное подключение должно привести к перераспределению напряжения: лампе вольт 12, АКБ вольта 2 — и АКБ не будет заряжаться. Но многие из людей недостаточно умны, чтобы предсказать реальный результат.

Лампа накаливания (и галогенная) работает как бареттер, имея изменяемое собственное сопротивление, в зависимости от нагрева (протекающего тока и падающего на ней напряжения), что в свою очередь меняет падение напряжения на лампе. В итоге лампа поддерживает относительно постоянный ток в цепи, ограничивает этот ток, защищает цепь от КЗ — и имея малое сопротивление очень слабо обворовывает напряжение у нагрузки, позволяя даже проводить заряд АКБ (возможно, более медленный).

Чем больше мощность лампы — тем большую силу тока она позволит пропускать. Если добавить к этому возможность установки нескольких ламп параллельно — можно регулировать и силу тока всей цепи, и сопротивления связки ламп. И чем больше ламп — тем более экономична цепь, т.к. общее сопротивление ламп меньше, и светят они меньше. Аналогично при сравнении свечения ламп 21Вт и 55Вт: 55Вт светится гораздо тусклее, несмотря на больший протекающий ток. И со степенью заряда АКБ свет все тусклее, а далее и вовсе пропадет — своеобразный индикатор заряда АКБ: «осталось немного». Ни одна из ламп не вызвала ослепления при взгляде на нее.

(добавлено 21.03.2016) Зарядка АКБ происходит не до конца. Когда ток дошел до минимального значения 1.1А, АКБ перестала заряжаться (при этом ток 1.1А продолжает течь, чудеса). Итого на АКБ стало 11.8В. Значит, нужно в схему добавить еще транзистор, который при напряжении на АКБ 12В отключал лампу и подавал ток напрямую.

Есть зависимость от сопротивления лампы: чем мощнее лампа, тем меньше сопротивление и тем меньше падение напряжения на ней. Надо будет потом с лампой 100Вт попробовать. И больше времени заряжать: вдруг процесс просто увеличился в 1.5 раза по времени.

(добавлено 25.03.2016) Зарядка АКБ происходит до конца (теоретический эмпирический расчет), но: время заряда настолько велико (несколько суток/недель), что можно считать добавление от 21 числа истиной.

(добавлено 26.03.2016) Ждите проверки на АКБ ИБП. Окончательно добил АКБ автомобильную: жила она с дохлой банкой — а теперь еще и пластины посыпались. Возможно, в этом виноват тестовый ток 15А, пущенный на протяжение 1 минуты. Может, из-за осыпавшихся пластин и не кончалась «зарядка» длительное время: закороченные пластины успешно проводили ток 1.1А — опять никаких чудес: просто недостаток знаний.

(добавлено 27.03.2016) Все, кто пробовал способ заряда АКБ через лампочку, в 1 голос говорят, что с АКБ просто совпало в плане кончины: лампа не вредит АКБ. Это логично: не повышает силу тока, а ограничивает; не повышает напряжение, а понижает. Причем понижение напряжения дает возможность зарядки нестандартными источниками питания, напряжение которых выбирается в зависимости от мощности лампы (чем меньше мощность — тем больше превышение вольтажа можно позволить). Правильный расчет позволяет даже заряжать АКБ при помощи ЗУ от ноутбука на 19В. В моем случае, когда АКБ перестала принимать заряд (и расходовала энергию на замкнутые пластины и бурление электролита), на клеммах АКБ было 12.7В при 14.4В на источнике питания — значит, лампа 21Вт отбирала 1.7В.

Читайте так же:
Как монтировать выключатель с лампочкой

В итоге при помощи обычного адаптера питания и лампочки можно создать полноценное ЗУ для АКБ. Но это — повод проверить на практике: адаптеров дома море, ламп море. Главное: во время теста не проворонить повышение напряжения на клеммах АКБ выше 14.4В, если лампа подобрана неверно.

(добавлено 29.03.2016) Оказывается, галогенные лампы достаточно хрупкие. Не знаю как, но лампа 55Вт при надавливании на металлический кожух оказалась повреждена. Причем визуальных следов повреждения нет — а ток в лампе потек в обход спирали. Знаю, что кварцевое стекло руками трогать нельзя — однако лампы не перегорали и не выходили из строя другими путями: либо напряжение ниже номинального, либо ток, либо время горения.

(добавлено 30.03.2016) Успешная зарядка АКБ ИБП через лампу накаливания 21Вт. На автомобильной АКБ проверить не могу, т.к. нет исправной — но и АКБ ИБП тоже кислотная.

Таблица мощности ламп и ограничения ими тока:
— 100Вт, галогенная. Для АКБ авто: ток <3.6А, для АКБ ИБП: <3.2А — для ИБП не годится,
— 55Вт, галогенная. Для АКБ авто: <3А, для АКБ ИБП <2.9А — для ИБП не годится;
— 21Вт, накаливания. Для АКБ авто: <1.2-1.7А, АКБ ИБП: <1А — для авто не годится;
— 10Вт, накаливания. Для АКБ ИБП <0.3А — годится для маленьких аккумуляторов?
— 5Вт, накаливания. Для АКБ ИБП <0.2А — годится для маленьких аккумуляторов?

Данные указаны для 5-годовалых АКБ Bosch S4 019 и АКБ ИБП APC 7А·ч, разряженных до 6.6В. Был сделан выбор в пользу 100Вт для АКБ авто и 21Вт для АКБ ИБП.

Светодиодные лампы для данной цели непригодны.

(добавлено 12.04.2016) Лампа дает гигантские возможности. Переделанный из БП лабораторный источник питания + лампа = ЗУ для любых аккумуляторов. Единственное условие: правильный подбор лампы, чтобы не было сверхтока. Полагаю, что для сотовых это будет лампа 5Вт.

(добавлено 12.04.2017) Добавляю ссылки о сопротивлениях ламп накаливания 12В, 24В и 220В. Например, сейчас буду использовать лампу 220В/25Вт для того, чтобы не использовать трансформатор при подключении двигателя от микроволновки в роли мешалки для реактивов.

5 схем плавного включения ламп накаливания

Внимание! Рассматриваемые устройства имеют на элементах сетевое напряжение и требуют особой осторожности при сборке и наладке.

Тиристорная схема

Данную схемку можно рекомендовать для повторения. Она состоит из распространенных элементов, пылящихся на чердаках и в кладовках.

УПВЛ на тиристорах своими руками

В цепи выпрямительного моста VD1, VD2, VD3, VD4 в качестве нагрузки и ограничителя тока стоит лампа накаливания EL1. В плечах выпрямителя установлен тиристор VS1 и сдвигающая цепочка R1 и R2, C1. Установка диодного моста обусловлена спецификой работы тиристора.

После подачи напряжения на схему, ток протекает через нить накала и попадает на выпрямительный мост, далее через резистор происходит зарядка емкости электролита. При достижении напряжения порога открывания тиристора, он открывается, и пропускает через себя ток лампочки накаливания. Получается постепенный, плавный разогрев вольфрамовой спирали. Время разогрева зависит от емкости конденсатора и резистора.

Симисторная схема

Прибор на симисторе

Симисторная схема одержит меньше деталей, благодаря использованию симистора VS1 в качестве силового ключа. Элемент L1 дроссель для подавления помех, возникающих при открывании силового ключа, можно исключить из цепи. Резистор R1 ограничивает ток на управляющий электрод VS1. Время задающая цепочка выполнена на резисторе R2 и емкости C1, которые питаются через диод VD1. Схема работы аналогична предыдущей, при заряде конденсатора до напряжения открывания симистора, он открывается и через него и лампу начинает протекать ток.

Читайте так же:
Найти силу тока в лампе если за 10 минут

На фото ниже предоставлен симисторный регулятор. Он кроме регулирования мощности в нагрузке, также производит плавную подачу тока на лампу накаливания во время включения.

Триак в сборе

Схема на специализированной микросхеме

Микросхема кр1182пм1 специально разработана для построения всевозможных фазовых регуляторов.

кр1182пм1

В данном случае, силами самой микросхемы регулируется напряжение на лампочке накаливания мощностью до 150 ватт. Если нужно управление более мощной нагрузкой, большим количеством осветителей одновременно, в цепь управления добавляется силовой симистор. Как это выполнить смотрите на следующем рисунке:

Подключение микросхемы

Использование данных устройств плавного включения не ограничиваются только лампами накаливания, их так же рекомендуется устанавливать совместно с галогеновыми на 220 в. Аналогичные по принципу действия устройства устанавливаются в электроинструменты, запускающие плавно якорь двигателя, также продлевая срок службы прибора в несколько раз.

Важно! С люминесцентными и светодиодными источниками устанавливать данное устройство категорически не рекомендуется. Это связано с разной схемотехникой, принципом действия, и наличием у каждого устройства собственного источника плавного разогрева для компактных люминесцентных ламп или отсутствии потребности в данном регулировании для LED.

Напоследок рекомендуем просмотреть видео, в котором наглядно рассматривается еще одна популярная схема сборки прибора — на полевых транзисторах:

Теперь вы знаете, как сделать устройство плавного включения ламп накаливания на 220 В своими руками. Надеемся, схемы и видео в статье были для вас полезными!

Регулятор яркости ламп накаливания

В радиолюбительской литературе описано немало разнообразных тиристорных регуляторов напряжения. Благодаря высокому КПД и малым габаритам эти устройства достаточно популярны. Современная элементная база позволяет несколько улучшить параметры старых вариантов таких регуляторов.

Автором этой статьи на основе сенсорного выключателя освещения разработан удобный светорегулятор, позволяющий плавно регулировать яркость сетевой лампы накаливания, устранять стартовый бросок тока и осуществлять плавное постепенное гашение лампы после выключения.

Устройство может использоваться с лампами накаливания, нагревательными приборами. При включении регулятор устраняет стартовый бросок тока через нить лампы накаливания, увеличивая этим срок ее службы в 1,5…2 раза.

Напряжение питающей сети: 220 В;

Отклонение питающего напряжения: 10%;

Максимальная мощность нагрузки: 250 Вт;

Время работы: не ограничено;

Собственная потребляемая мощность: 0,5 Вт;

Допускаемый нагрев корпусов деталей: 75 °С.

Достоинством устройства является возможность включать его непосредственно в разрыв сетевого провода, питающего лампу, что выгодно отличает его от других тиристорных регуляторов. Падение напряжения на самом светорегуляторе при максимальной яркости не превышают единиц вольт.

Схемотехника устройства традиционна, тиристор включен в диагональ моста, импульсное управление реализовано на генераторе коротких импульсов, собранном на аналоге однопереходного транзистора (VT2, VT3). Можно конечно применить и однопереходной транзистор, но это сделает устройство дороже и не намного меньше. Сам генератор управляющих импульсов содержит управляемый напряжением источник тока на транзисторе VT1, благодаря чему стало возможным изменять момент открывания тиристора как с помощью переменного резистора, так и посредством изменяющегося напряжения на конденсаторе С1.

Читайте так же:
Лампочка с проводом автомобильная маркировка

Принципиальная схема устройства показана на рис.1.

Регулятор включают в разрыв провода, идущего к лампе, как и обычный выключатель (рис.1). Если необходимо обеспечить не только регулирование яркости, но и плавное гашение лампы после выключения, то с печатной платы устройства удаляют перемычку и на ее место подключают любой выключатель, можно миниатюрный низковольтный. Теперь после выключения лампа гаснет медленно на протяжении нескольких десятков секунд. Если в плавном гашении нет необходимости, то устройство подключают в разрыв провода, последовательно со стандартным выключателем, при этом оно выполняет функции только регулятора яркости.

Габариты устройства зависят в основном от примененных тиристора и диодного моста. В более габаритном варианте применен тиристор КУ202Н, КУ202К и импортный диодный мост RB157, рассчитанный на максимальный ток до 1,5 А при допустимом обратном напряжении около 400 В. При отсутствии оного можно применить любой подходящий по напряжению и току мост, собранный даже на отдельных диодах. Из малогабаритных диодов подойдут КД105Г (мощность лампы не более 60 Вт) или малогабаритные импортные диоды 1N4007, мощность лампы с которыми может достигать 200 Вт. Можно также применять диодные мосты на 1,5…2 А/600 В. используемые в импульсных компьютерных блоках питания. Они имеют прямоугольный пластиковый корпус и расположение выводов в один ряд “гребешком”.

Еще более уменьшить габариты можно применив тиристор семейства Т106-10-4, выполненный в пластмассовом корпусе ТО220, как у мощных транзисторов типа КТ805, КТ819. Для уменьшения габаритов желательно применить миниатюрный стабилитрон (VD2) в стеклянном корпусе. Напряжение стабилизации может быть в пределах 9…15 В, рабочий ток более 3 мА. Рисунок печатной платы со схемой расположения элементов показаны на рис.2.

Примечание. Не допускается использование регулятора с нагрузкой реактивного характера (трансформаторы, электродвигатели, люминесцентные и энергосберегающие лампы). Необходимо помнить, что все детали устройства находятся под высоким потенциалом сетевого напряжения. Не касайтесь регулятора мокрыми руками – это опасно для жизни!

Диммер для лампы накаливания: устройство и самостоятельное изготовление

Многие владельцы частных домов и квартир предпочитают всячески управлять освещением в своем помещении. Одним из многих вариантов является регулятор яркости для ламп накаливания. Для таких целей используют специальные устройства, называемые диммерами. Существует множество моделей данного девайса, но стоимость многих из них не по карману обычному покупателю. При необходимости возможно собрать диммер для ламп накаливания своими руками, имеется несколько вариантов его изготовления. Эти устройства могут быть 12- и 220-вольтовые.

Устройство

Чтобы сделать диммер своими руками, потребуется подробно изучить принцип его действия и внутреннее устройство. Простейшие из этих девайсов имеют ручку, поворачивая которую можно регулировать освещение, и выведенные клеммы для подключения проводов. Таким устройством управляют яркостью ламп двух видов — галогенных и накаливания. С развитием электроники стали появляться диммеры для регулирования мощности люминесцентных и светодиодных ламп.

Внутреннее устройство диммера

Внутреннее устройство диммера

В более ранние времена для изменения этого параметра у ламп накаливания применяли резисторы. Мощность таких деталей рассчитывалась не меньше нагрузочной. Минусом таких приспособлений являлась потеря мощности при снижении яркости света.
Наиболее часто их применяли в больших общественных залах, театрах и т. д. Принцип работы прибора основан на использовании симистора и динистора, являющихся современными полупроводниковыми приборами.

Читайте так же:
Дистанционные выключатели для энергосберегающих ламп

По конструкционным особенностям диммеры можно классифицировать по следующим типам:

  • поворотные, где управление выполняется при использовании ручки – электронные;
  • кнопочные управляются при помощи специальных кнопок – групповые;
  • дистанционные, которые работают при помощи дистанционного пульта.

Кнопочный диммер более многофункционален, чем поворотный. Это связано с тем, что если в цепь завязать нужное количество кнопок, управление можно осуществлять с разных мест. Длина проводов, используемых для подключения диммера, не должна превышать 10 метров. Это связано с возникновением помех.

Кнопочный диммер

Кнопочный диммер

Мало кто знает, что при помощи самодельных регуляторов мощности можно изменять температуру паяльника, контролировать обороты вытяжного вентилятора. Также он отлично подойдет для пылесоса или дрели, у которых можно регулировать их скорость вращения.

Подключение диммера

Схема диммера для ламп накаливания довольна простая. Он подключается вместо обычного выключателя в разрыв цепи в монтажную коробку. Необходимо соблюдать предписания изготовителя, согласно которым нельзя путать выводы для подключения фазы и нагрузки. Для сборки диммера своими руками не понадобится много дорогих деталей, подойдут симисторы, рассчитанные на определенную мощность. Существует два варианта подключения — одинарный и групповой. Первый вариант подразумевает подключение в цепь с одним или несколькими источниками света, которые объединены в группу. При групповом способе принципиальная схема будет насчитывать несколько диммеров, согласно количеству групп освещения.

Групповое подключение светорегулятора

Групповое подключение светорегулятора

При подключении светорегулятора вместо двухклавишного выключателя работа светильника немного изменится. Теперь будет другим подсоединение проводов и лампы накаливания, их не получится включать групповым способом. Фазу необходимо подсоединить на фазный вывод диммера, а остальные два присоединяются на соседнюю клемму. Для осуществления прежнего освещения потребуется групповой светорегулятор.

Изготовление

Как указывалось ранее, существует множество схем, с помощью которых умельцы изготавливают устройства, способные регулировать значение напряжения для осветительных приборов. Можно выделить несколько наиболее популярных элементов, используемых для сборки данных устройств:

  • симистор;
  • тиристор;
  • конденсатор;
  • применение готовых микросхем.

Принцип работы диммера на симисторе

Данный светорегулятор работает от сети 220 В. В основу его действия заложено открытие силового ключа за счет смещения фазы. Главным элементом схемы является RC-цепочка, которая у каждого устройства разного номинала. Силовым ключом выступает симистор. Работа схемы заключается в пропускании симистором через себя тока. Для этого необходимо возникновение напряжения между его электродами. Чтобы регулировать смещение фазы, и тем самым угол открывания, в цепочку впаивается переменный реостат, который предназначен для регулировки быстроты заряда конденсатора. В цепь с управляющим электродом ставится динистор. Время, за которое конденсатор наберет пороговое напряжение, влияет на быстроту открытия симистора, а значение нагрузок будет прямо пропорционально зависеть от величины этого напряжения.

Принцип работы диммера на симисторе

При наличии принципиальной схемы такой диммер на симисторе можно собрать менее чем за час.

Как работает диммер на тиристоре?

Данный светорегулятор могут собрать умельцы, у которых есть различные радиодетали, из которых можно выбрать тиристоры с необходимыми параметрами. Этот самодельный диммер будет немного отличаться схемой и является более трудным в сборке. В нем для каждого ключа устанавливается отдельный динистор и тиристоры для полуволн.

Для работы данной схемы применяются две параллельные цепочки резисторов. Через одну цепь резисторов проходит заряд конденсатора, где в свою очередь происходит нарастание порога открывания ключа, при открытии которого на электрод управления подается ток и проходит положительная полуволна. Отрицательная фаза пропускает волну таким же образом через другой ключ.

Читайте так же:
Какой выключатель для энергосберегающей лампочки

Важно знать, что использовать диммер на тиристоре не получится для приборов освещения, в которых устанавливаются светодиодные, люминесцентные и экономные лампы.

Конденсаторный диммер и принцип его действия

Помимо регуляторов, рассчитанных на плавность управления освещением, также распространены устройства, работающие за счет конденсатора. В этом случае на передачу тока влияет емкостная величина. Соответственно, с увеличением емкости конденсатора через его полюсы пройдет ток большего значения. Данный диммер-регулятор является достаточно компактным.

В основном схемы для таких устройств сочетают в себе три различных положения:

  • Без ограничения мощности.
  • Через конденсатор гашения.
  • Перекрытое положение (режим «выключено»).

В схеме такого диммера обычно используют неполярные конденсаторы. Найти их можно в электротехнике старого образца. Используя схему, можно своими руками собрать светорегулятор и управлять значением напряжения на лампочке в светильнике.

Использование микросхем для пониженного напряжения

В цепях с постоянным напряжением, рассчитанным на 12 вольт, регулировка мощности часто выполняется при помощи интегральных стабилизаторов, называемых КРЕНами. Использование таких устройств позволяет регулировать электрические двигатели малой мощности и светодиодное освещение. Чтобы обеспечить удобство монтажа деталей, используют микросхему. Готовый диммер будет не только выполнять функции регулировки, но и обеспечивать защиту электрооборудования.

Микросхема для сборки светорегулятора

Микросхема для сборки светорегулятора

Использование микросхемы КРЕН обеспечивает управление значением напряжения от 1,5 В до 30 В, а тока до 7,5 А. Во время сборки устройства нужно обратить внимание на следующие нюансы:

  • Для охлаждения микросхемы необходим радиатор, что обусловлено ее нагреванием при выделении тепла. Это является существенным недостатком, так как занимается лишнее место на плате.
  • Установленные диоды должны быть рассчитаны на ток не более 12 А и напряжение от 50 В.
  • Силовой трансформатор устанавливается мощностью не менее 0,25 кВт.

Принцип действия схемы прост. На электроде управления за счет переменного резистора образовывается основное напряжение. С помощью стабилизатора можно регулировать этот параметр от максимальных 12 вольт до десятых его долей.

Вариант с цифровой микросхемой

Для выполнения регулировки осветительных приборов со светодиодными лампами обычные светорегуляторы не подходят, потому что для их включения необходимо 9 В. Такой диммер можно собрать, используя микросхему NE555. При возникновении потребности в плавной регулировке освещения в данную схему можно подключить и лампы на 12 В. Мощность здесь усиливает полевой транзистор. Это связано с тем, что у микросхемы выходной ток составляет 0,2 А.

Диммер цифрового типа

Диммер цифрового типа

При увеличении нагрузки свыше 1 А потребуется установка транзистора на радиатор, который можно выполнить из любого подходящего материала. Для защиты этой детали от статических помех потребуется перемотать выходящие ножки фольгой из алюминия или медной проволокой.

Монтаж диммера можно произвести на текстолите с оболочкой из фольги. Такой материал применяется для изготовления печатных плат. Материал корпуса выбирается на усмотрение исполнителя работы.

Большинство современных диммеров – китайского производства. Не все светорегуляторы добротного качества. Иногда лучше изготовить диммер своими руками, чем переплатить деньги за быстро вышедшее из строя устройство.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector