Gutdver.ru

Отделка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные причины падение светового потока и снижения качества света светодиодных ламп

Основные причины падение светового потока и снижения качества света светодиодных ламп

Производители светодиодных ламп обещают очень большую длительность работы своих изделий от 20 тыс. часов и выше, самые современные светодиодные источники света способны работать без существенной потери своих характеристик до 100 тыс. часов.

Но существенной проблемой, с которой сталкиваются потребители, становится преждевременное снижение яркости светодиодных ламп, лент и модулей, а также смещение их цветовой температуры (обычно в сторону синего или желтого цветов).

Существует понятие эффективный срок службы – период падения мощности светового потока от начального на 30%. Хорошим примером деградации кристаллов светодиода служит данное изображение, только один из светодиодов на этом отрезке ленты сохранил первоначальную яркость.

Основные причины снижения светового потока

Перегрев светодиодных ламп — основная причина, из-за которой снижается яркость и качество светового потока. Несмотря на то, что такие источники света имеют очень высокий КПД, часть энергии все же преобразуется в тепло, большинство светодиодов не рассчитаны на нагрев выше 60-70 градусов (ряд современных изделий гарантированно работает без ухудшения характеристик при существенно более высоких температурах). На графике видно, что увеличение температуры на 11 градусов привело к снижению эффективного срока службы в несколько раз.

Конструкция типичной светодиодной лампы небольшой мощности

В большинстве ламп бытового класса размеры радиатора минимальны или его роль выполняет плата, на которой распаяны светодиоды. Более серьезные система охлаждения для светодиодных ламп (массивные радиаторы) используется при мощности от 18Вт. В моделях с мощностью более 40-50Вт, часто кроме радиатора используется еще и активная система охлаждения (куллер).

Также следует отметить, что особенно остро стоит проблема перегрева RGB светодиодов, поскольку красные светодиоды деградируют значительно быстрее, чем синие, что приводит к искажению цвета.

Перегрев светодиодов приводит к:

Деградации кристаллов светодиода. При перегреве возникают дефекты в кристаллических решетках, такие области не излучают свет, но при этом активно генерируют тепло, еще более усугубляя процессы деградации кристалла.

Вторым моментом является электрическая диффузия металлов, из-за которой в кристалл светодиода мигрируют атомы электродов, что приводит к нарушению кристаллической структуры p-n перехода и уменьшению напряжения на участках излучающих свет.

Выгорание люминофора. При перегреве люминофорное покрытие может выгорать, что приводит к падению яркости и изменению оттенка свечения, поскольку в спектре может появляться собственное излучение светодиодного кристалла.

Еще одной, не столь явной, проблемой перегрева светодиодных ламп становится ускоренное старение электролитических конденсаторов, это, в первую очередь, касается светодиодных ламп, где светодиоды и драйвер питания находятся в одном корпусе. Такие процессы могут привести к росту коэффициента пульсаций, что негативно сказывается на комфортном восприятии для глаза.

Помутнение оптической части

Оптическая система светодиода изготавливается из пластмассы или силикона, в некоторых случаях она может помутнеть, что, естественно, приводит к снижению интенсивности светового потока. Причиной становится или воздействие УФ-излучения, или сильный перегрев.

Механические повреждения и напряжения

При производстве и в процессе эксплуатации в светодиодах могут возникать участки внутреннего напряжения, они могут стать причиной обрыва контакта или ухудшения теплопередачи от кристалла на радиатор.

Что можно предпринять

Основным советом становится рекомендация – приобретать только качественные светодиодные лампы, ленты, модули и т.д. поскольку практически все зависит от производителя. Если производитель сэкономил на светодиодных кристаллах, люминофоре, системе охлаждения, драйвере питания и т.д., использовал устаревшее оборудование и технологии – срок службы лампы существенно сокращается. В то время как качественные изделия служат многие годы без таких явлений как деградация кристаллов светодиодов, выгорание люминофора и смещение цветового спектра.

При использовании светодиодных ламп в плафонах закрытого типа, когда отсутствует циркуляция воздуха, забирающего избыточное тепло, период эффективного срока службы может существенно снижаться. Также это касается и помещений с повышенной температурой – кухни, сауны и т.д.

Читайте так же:
Диммируемая лампа выключатель с подсветкой

Для светодиодных лент, особенно с мощными светодиодами и с большой плотностью их посадки, необходимо использовать алюминиевые профили или алюминиевые подложки, которые выступают в роли радиатора. Также необходимы качественные источники питания.

Как продлить ресурс автомобильных светодиодных ламп без применения стабилизаторов

Предупреждение: Будет много букв, но вроде все по делу. Статья рассчитана на новичков, умеющих пользоваться паяльником.

Часть 1. Предисловие

Наверное, многие из вас меняли штатные лампы накаливания в плафонах салона, в подсветке номера, в габаритных огнях, в приборной панели и т.д., на светодиодные лампы.

Как правило, при подобных заменах используются уже готовые автомобильные светодиодные лампы, рассчитанные на напряжение 12 вольт.

По сравнению с лампами накаливания, преимущества светодиодных ламп известны, это малое энергопотребление, большой выбор цветов свечения, меньший нагрев, а также существенно больший срок службы.

Однако, для долгой и счастливой жизни светодиода весьма важно, чтобы протекающий через него ток не превышал заданных производителем величин. При превышении максимально допустимого тока, происходит быстрая деградация кристаллов светодиодов, и лампа выходит из строя.

Поэтому, в "правильные" светодиодные лампы уже встроен стабилизатор тока (драйвер). Но такие лампы, как правило, стоят недешево. В связи с этим, в автолюбительской среде гораздо большее распространение получили дешевые светодиодные лампы, не имеющие встроенного стабилизатора. Примеры таких ламп на фото 1:

Из-за отсутствия стабилизатора, такие лампы весьма чувствительны к скачкам напряжения в бортовой сети автомобиля. Кроме того, хитрые узкоглазые производители ламп рассчитывают их параметры, как правило, на максимальное напряжение 12В. Однако, как известно, при работе двигателя напряжение в бортсети составляет 13.5-14.5В. В итоге, светодиодные лампы, не имеющие стабилизатора, часто служат даже меньше, чем обычные лампы накаливания. Особенно это заметно при использовании светодиодных ламп в подсветке номера и в габаритных огнях, когда светодиоды работают в течение длительного времени. Месяц-другой, реже полгода, и лампа начинает мигать, а вскоре и совсем гаснет.

Один из способов продлить жизнь таким лампам — это подключение их через стабилизаторы тока (или напряжения), которые защитят лампы от скачков напряжения в бортовой сети автомобиля и обеспечат требуемый ток. Однако, такой способ имеет ряд существенных недостатков:

Недостаток 1. Для установки стабилизаторов требуется вмешательство в электропроводку автомобиля, на что пойдет не каждый автовладелец, особенно в гарантийный период.

Недостаток 2. По схемотехнике, стабилизаторы делятся на линейные и импульсные. Линейные довольно сильно греются при относительно небольших токах, а импульсные генерируют высокочастотные помехи, которые влияют на качество приема радио.

Недостаток 3. Ламп в автомобиле много, и на каждую (пусть даже группу ламп) поставить стабилизатор проблематично.

Недостаток 4. Возврат к штатным лампам накаливания может потребовать демонтажа ранее установленных стабилизаторов.

Поэтому, в данной статье я предлагаю способ, как существенно продлить срок службы светодиодных ламп, без использования стабилизаторов. Речь пойдет о простой доработке самих светодиодных ламп.

Часть 2. Немного теории

Мне приходилось разбирать множество автомобильных светодиодных ламп. Несмотря на разный внешний вид, тип цоколя и габаритные размеры, практически все недорогие лампы конструктивно похожи, с небольшими вариациями, которые я отмечу далее.

Итак, среднестатистическая автомобильная светодиодная лампа выполнена по типовой схеме, представленной на рис. 2 (приведен пример для 9 светодиодов):

Обозначение элементов на схеме, слева направо:

R0: Резистор-обманка для системы контроля исправности ламп. О нем я сделаю отдельный материал, здесь его пока не рассматриваем. Этот резистор может присутствовать, а может и нет.
I0 — ток через резистор R0. Добавлено: Резисторы-обманки в светодиодных лампах, плюсы и минусы.

VDS1: Диодный мост. Так как для светодиодов важна полярность подключения, диодный мост позволяет подключать лампу как обычную лампу накаливания, не думая о полярности. Самые дешевые лампы не имеют диодного моста, но, в последнее время, он часто присутствует даже в малогабаритных бесцокольных лампах. Диодный мост установлен в лампу чисто для удобства пользователя.

Читайте так же:
Как по току мощность лампочки накаливания

R1-R3: Токоограничивающие резисторы для цепочек из трех светодиодов HL1.1-HL1.3 и т.д. Эти резисторы задают ток, протекающий через каждую из цепочек светодиодов. Чем больше сопротивление резистора, тем меньше ток через светодиоды.

HL1.1-HL1.3: Цепочка из трех светодиодов. В разных по конструкции светодиодных лампах, количество цепочек и количество светодиодов в цепочке может быть различным, но часто используются именно цепочки из трех светодиодов. На данной схеме для примера показана лампа с тремя цепочками по три светодиода в каждой. Есть лампы, состоящие вообще из одного светодиода, но схемотехника у них такая же.

I1-I3: ток через цепочки, например, I1 — ток через цепочку R1-HL1-HL2-HL3 и т.д. Суммарный ток, потребляемый лампой, равен сумме токов Iобщ=I0+I1+I2+I3.

Чтобы повысить надежность работы лампы, правильно ставить на каждую из цепочек отдельный токоограничивающий резистор R1-R3. В этом случае выход из строя светодиодов в одной из цепочек не повлияет на ток через другие цепочки. Однако, в целях экономии, производители дешевых ламп ставят один общий резистор на все цепочки. Такие лампы менее надежны, но выяснить это суждено уже покупателю. Упрощенная схема лампы с одним токоограничивающим резистором приведена на схеме на рис. 3:

От теории перейдем к практике. Я не буду грузить вас сложными расчетами, просто покажу, что и как делать.

Часть 3. Доработка автомобильных светодиодных ламп, не имеющих встроенного стабилизатора тока

Для доработки ламп понадобятся:

1. Паяльные принадлежности — паяльник на 25-40 Вт, флюс, припой.
2. Наличие мультиметра и паяльного фена приветствуется.
3. Набор резисторов требуемой мощности и номиналов. Возможно, для определения типа и номиналов резисторов, придется предварительно разобрать одну лампу для изучения.

Пример 1: Цилиндрические лампы типа C5W или C10W

Отпаиваем металлические контактные колпачки, нагревая их феном или паяльником сбоку, в месте соприкосновения с платой. Под одним из колпачков видим резистор-обманку R0, о нем поговорим в следующей записи (фото 4):

На фото 5 слева направо видим диодный мост VDS1, две цепочки светодиодов HL1-HL2 по три светодиода в каждой, и общий токоограничивающий резистор R1. Это означает, что данная лампа выполнена по упрощенной схеме с одним резистором (см. рис. 3).

Для сравнения, на фото 6 приведена более "правильная" лампа, где используются три токоограничивающих резистора, по одному на каждую цепочку:

На фото 7 показана светодиодная лампа со светодиодной матрицей (технология COB). Такие лампы легко отличить по внешнему виду, на них не видно отдельных светодиодов. Для матрицы COB используется один токоограничивающий резистор R1. В данном конкретном случае, это не удешевление:

Доработка лампы очень простая и сводится к замене токоограничивающих резисторов на резисторы большего номинала. Тем самым мы уменьшаем ток через светодиоды, в результате они меньше греются и дольше служат.

Я провел ряд измерений на различных светодиодных лампах, и для себя сделал следующие выводы:

Вывод 1: Большинство дешевых ламп рассчитаны производителем на максимальное напряжение 12В, не более. При работе в реальных условиях, при напряжении в бортсети порядка 13.5-14.5В, светодиоды работают с перегрузкой и быстро выходят из строя.

Вывод 2: Увеличение номинала токоограничивающего резистора в 2-3 раза не сильно сказывается на яркости свечения лампы, но пропорционально снижает ток через светодиоды, чем существенно продлевает их ресурс.

Вывод 3: Даже при уменьшении тока в 3-5 раз по сравнению с исходным, светодиодные лампы светят ярче, чем аналогичные лампы накаливания.

Отпаяв колпачки и получив доступ плате, выпаиваем заводской резистор и вместо него впаиваем свой, с увеличенным сопротивлением.

На фото 8 заводской резистор сопротивлением 22 Ом заменен на резистор сопротивлением 100 Ом (почти в 5 раз больше):

Читайте так же:
Лампочка с проводом автомобильная маркировка

Подбором номинала резистора можно изготовить лампы для различных применений, например, для освещения салона сделать поярче, в подсветку номера — поменьше яркостью и т.д. Например, на фото 9, для подсветки номера, я поставил резисторы сопротивлением 150 Ом (в 7 раз больше штатного 22 Ом), яркость все равно осталась больше штатных ламп накаливания:

Пример 2. Бесцокольные лампы T10 W5W

Отгибаем контактные усики и разбираем лампу (фото 10):

Видим, что лампа имеет простейшую конструкцию, без диодного моста, питание на светодиоды подается через один токоограничивающий резистор (фото 11):

Еще одна распространенная разновидность лампы W5W, с одним мощным светодиодом. Разбирается аналогично предыдущему примеру (фото 12):

Здесь в конструкции питание подается через два последовательно включенных резистора. Это сделано для того, чтобы резисторы поменьше грелись (фото 13):

Пример 3. Малогабаритные лампы T5 для приборной панели

Как правило, из-за ограниченного размера, в конструкции таких ламп оставлен лишь один светодиод и один токоограничивающий резистор. Разбираются аналогично лампам W5W, путем отгибания усиков (фото 14-15):

Все рассмотренные лампы дорабатываем аналогично, просто заменяем штатные резисторы на свои, с увеличенным в 2-3-5 раз номиналом. Сопротивление резистора подбираем, в зависимости от требуемой яркости свечения.

Часть 4. Некоторые практические советы

Совет 1. В лампах различного размера и конструкции, могут использоваться различные по типу и размеру элементы. Как правило, компоновка деталей лампы довольно плотная, поэтому запаять вместо штатных другие типоразмеры часто бывает затруднительно, из-за ограниченного свободного места. Поэтому, заранее подбирайте подходящие детали, но при этом чтобы мощность нового резистора не была меньше мощности штатного (фото 16):

Совет 2. При работе с паяльным феном, легко повредить горячим воздухом соседние детали, например, светодиоды. Поэтому, перепаивая резисторы, закрывайте другие детали от воздействия горячего воздуха. Я, например, просто прикрывал светодиоды пинцетом (фото 17):

Совет 3. При выпаивании колпачков ламп C5W и C10W, часть припоя может вытечь. При сборке лампы, для надежной пайки колпачков, можно заранее добавить припоя на контактные пятачки платы, тогда при нагреве припой надежно соединит плату и колпачок.

Совет 4. Некоторые лампы со светодиодными матрицами COB, для красоты прикрыты декоративными пластиковыми стеклами. Эти стекла ухудшают теплоотвод, рекомендую их снять, на внешний вид подсветки по факту это никак не влияет, а охлаждаться лампа будет лучше (фото 19):

И в завершение, небольшой прикол. Интересно, откуда на лампе взялась надпись "КОЛЯ", нанесенная промышленным способом? (фото 20):

Данная простая доработка позволяет существенно продлить ресурс автомобильных светодиодных ламп, даже без использования стабилизаторов тока или напряжения.

Помогите понизить ток светодиодов LED лампы

Попадаются светодиодные лампы, которые не могу отремонтировать.
Прошу помощи.

Вот так подключены светодиоды и драйвер:
Изображение

Напряжение под нагрузкой между двумя средними контактами "+" и "-": 62В.
Напряжение на каждом диоде: 8,9В.
Ток в цепи светодиодов: 220мА (включены 7 групп, по 3шт. в группе, на одном диоде получим 220/3 = 73,3мА).

Хочу уменьшить ток.
Рядом с микросхемой драйвера стоят резисторы общим сопротивлением 0,7Ом.
Выпаиваю один резистор и сопротивление становится 1,3Ом.
Включаю лампу, успеваю измерить ток: с 220мА он понизился до 155мА.

Измеряя ток, вижу что не все светодиоды светят одинаково (ВСЕ ДЕЙСТВИЯ ДЕЛАЮ С НОВОЙ ЛАМПОЙ).
Некоторые группы горят нормально, а некоторые еле-еле и подмигивают.
Едва я успел измерить ток, как лампа погасла и около 4 светодиодов почернели.

Подскажите пожалуйста, как в лампах с такой схемотехникой корректно уменьшать ток?

Re: Помогите понизить ток светодиодов LED лампы

Пт ноя 27, 2020 12:00:49

Re: Помогите понизить ток светодиодов LED лампы

Пт ноя 27, 2020 12:07:46

Re: Помогите понизить ток светодиодов LED лампы

Пт ноя 27, 2020 12:16:07

Читайте так же:
Как регулировать ток в лампе накаливания

Взаимоисключающие параграфы.
Ищите, где коротнули во время выпайки/измерения.

Я ремонтирую/дорабатываю подобным же образом — удалением резистора с бо́льшим сопротивлением из параллельной пары. И никаких проблем.

Re: Помогите понизить ток светодиодов LED лампы

Пт ноя 27, 2020 12:39:07

Ничего не выпаивал.
Перерезал дорожку между группами светодиодов и туда амперметром становился.
Если смотреть на фото то перерезал слева от контакта B1, там ничего рядом нет, чтобы закоротить.

Одел затемнённые очки для газосварщиков, встал щупами в разрыв цепи, увидел, что ток понизился.
Потом, на светодиоды смотрю, а они горят с разной яркостью.
Секунд 5 ещё прошло и всё потухло.
Очки снимаю, а там четыре почерневших.

Попадалась ещё одна лампа с выходом драйвера 310В, там 12 диодов были включены последовательно.
В таких вариантах заменять сгоревшие светодиоды перемычкой у меня не получилось – горят другие моментально.
Даже измерить ток на светодиоде не перерезая дорожку нельзя.
Только начнёш мерять ток, светодиод гаснет и на остальные идёт повышенное напряжение и горят другие диоды.

С лампами, где драйвер на выходе делает около 110В проблем нет. Можно и коротить диоды и уменьшать ток без проблем.

А с этими, где 310В без нагрузки, не могу разобраться.

Re: Помогите понизить ток светодиодов LED лампы

Пт ноя 27, 2020 12:46:05

Re: Помогите понизить ток светодиодов LED лампы

Пт ноя 27, 2020 12:49:14

— как вариант — перманентно коротнул печатную дорожку на алюминиевую плату-теплоотвод. А она обычно имеет контакт со схемой (для предотвращения самосвечения от наводок при выключенном выключателе). Дальше там пути тока неисповедимы.

Фантастики не бывает — светодиоды не сгорают после уменьшения их номинального тока.

Re: Помогите понизить ток светодиодов LED лампы

Пт ноя 27, 2020 15:26:14

Огромное спасибо за информацию!
У меня именно так и было.
Первый раз встал щупами неудобно.
Перехватился, чтобы посильнее к контактам прижать и начались «пляски».

Не мой случай.
Буду знать, спасибо вам.

Заменил сгоревшие светодиоды.
Восстановил сделанный мной разрыв цепи.
Включил в сеть – лампа заработала.
Напряжение под нагрузкой снизилось с 62В до 58,8В.
Напряжение на диодах снизилось с 8,9В до 8,4В.
Ток измерять теперь боюсь.

Если я правильно понял, если я сейчас попытаюсь измерить ток на светодиоде щупами, то спалю опять светодиоды.
Потому что когда я на него встану, то закорочу его, он погаснет и на остальные светодиоды пойдёт повышенное напряжение.
Мне нужно сначала собрать цепь с амперметром и надёжными контактами в точке разрыва цепи, а затем включать лампу?

Или, возможно, есть какие-нибудь дополнительные меры предосторожности при работе с такими схемами, подскажите пожалуйста.
Жалко загубить светодиоды.

Re: Помогите понизить ток светодиодов LED лампы

Пт ноя 27, 2020 15:30:42

Драйвер должен не дать. Он там как стабилизатор тока. Снизит напряжение на всей цепочке.

Плохой способ. Нельзя быть уверенным, что сопротивление цепи "щупы-мультиметр" при измерении — близко к нулю.
Лучше уж впаяться в разрыв всей цепочки до подачи напряжения на лампу.

Я вообще не измеряю ток. Потому-что очевидно, что при изъятии одного резистора он упадёт в любом случае.

Re: Помогите понизить ток светодиодов LED лампы

Пт ноя 27, 2020 16:25:50

Спасибо Андрей, понял.

Думаю, что основной моей ошибкой было включать амперметр в цепь лампы, которая уже включена в сеть 220В (как писал Martin76 ).
С такого типа драйверами "на лету" нельзя щупы в цепь подключать.

Ранее, чаще попадались драйверы, которые на выходе 110В выдают и там либо мне везло, либо таких тонкостей нет.
Влючал щупы и ставил перемычки налево и направо, как хотел.

Схема включения bp2832a, замена на аналоги

Светодиоды – наиболее оптимальный источник освещения. Они экономичны, долговечны, их спектр наиболее близок к естественному свету, поэтому наиболее комфортен для человека. Повсеместному распространению их препятствует лишь достаточно высокая стоимость, но даже при этом за время эксплуатации они окупятся многократно.

Читайте так же:
Акустический выключатель лампы схема

Иногда они выходят из строя раньше окончания эксплуатационного периода. Ну, не предусмотрел производитель, что напряжение в сети будет прыгать сильнее курса евро на валютной бирже. Никому не придёт в голову ремонтировать сгоревшую лампочку накаливания. Да и ремонт энергосберегающей лампы по стоимости будет часто сопоставим с покупкой нового экземпляра, поскольку большая часть её стоимости именно блок управления.


А вот выбрасывать перегоревшую светодиодную лампу однозначно не стоит. Электронные компоненты платы питания стоят значительно дешевле самих светодиодов, которые «ломаются» крайне редко.

Причины выхода из строя светодиодной лампы

Основные узлы светодиодной лампы

При перепаде напряжения чаще всего сгорает микросхема – драйвер питания. Выход из строя диодного моста либо сглаживающего конденсатора скорее казуистика.

В промышленных лампах чаще всего в качестве высоковольтного драйвера питания используют микросхему bp2831. Её задача – обеспечить стабильное напряжение, подаваемое на светодиоды.

Вот классическая схема питания для таких ламп. Понятно, что номинал радиодеталей может незначительно различаться, но общий принцип схемы будет одинаковым.

Схема bp2831

Назначение управляющих выводов:

VCC – положительный полюс питания;
GND – земля;
ROVP – ограничение напряжение;
CS – ограничение тока;
DRAIN – выход диммированного сигнала.

Эта микросхема представляет собой ШИМ-контроллер, управляющий сигнал, которого коммутируется через мощный мосфетовский полевой транзистор.

Вот так она выглядит на плате

Вид микросхемы на плате

Размещение bp2831 на плате

Аналоги bp2831a

Существует несколько распространённых микросхем для создания драйверов питания светодиодов, например bp3122, bp2832, bp2833. Следует отметить, что принцип работы у всех вариантов одинаковый, есть лишь небольшие различия в подключениях вывода.

Схема включения bp3122

Схема включения bp3122

Схема включения bp2831

Схема включения bp2831

Схема включения bp2832a

Схема подключения bp2832

Схема включения bp2833

Схема включения bp2833

Различаются эти микросхемы лишь мощностью выходного каскада.

Параметры микросхем драйверов питания
МикросхемаТип корпусаМощность выходного каскада, мА
36В72В
bp9912/9913TO92/SOT2375-16090-200
bp2831SOP8160220
bp2832/2833SOP8220300
bp3122DIP7240320

Как подобрать нужную микросхему для драйвера питания?

Часто бывает, что при перегреве микросхемы маркировка на ней выгорает. Тогда потребуется произвести расчёт приблизительной мощности устройства.

Определяем мощность лампы.

Вариант 1. Смотрим маркировку на корпусе лапы в районе цоколя. Если она стёрлась, а в люстре несколько таких лампочек, скорее всего они одинаковой мощности. В том случае, когда ни на одной лампе не удалось обнаружить маркировку, сравните их яркость с обыкновенными лампами накаливания. Мощность светодиодной лампы приблизительно в пять раз меньше мощности аналога с нитью накаливания.

Вариант 2. Считаем количество светодиодов. Если их очень много – это cmd3528 с напряжением питания 3,3В и силой тока 20мА. Около 20 небольших — cmd 5050 на 3,3В и 60мА, крупные светодиоды — cmd5730 на 3,3В и 0,15А.

Соответственно мощность лампы = количество светодиодов * 3,3В * силу тока одного светодиода.

Лампа на 3Вт, 44 диодаЛампа на 4,5Вт, 22 диодаЛампа на 9Вт, 20 диодов
48 х 0,02А х 3,3В = 2,9Вт22 х 0,06А х 3,3В = 4,3Вт20 х 0,15А х 3,3В = 9,9 Вт
Пиковая мощность драйверов питания
МикросхемаПиковая мощность выходного каскада, Вт
36В72В
bp9912/99132.7-5.57-14
bp2831616
bp2832/2833821
bp3122924

Светодиоды могут иметь последовательное соединение, либо несколько параллельных цепочек.

Внимательно осмотрите монтажную плату. Если на ней последовательно соединено по 22 элемента, напряжение питания цепочки – 72В, когда по 11 – 36В.

Соответственно, сила тока в цепи – номинальный ток диода * количество параллельных цепочек.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector