Gutdver.ru

Отделка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Про электрические аппараты защиты для чайников: автоматические выключатели

Про электрические аппараты защиты для «чайников»: автоматические выключатели

Про электрические аппараты защиты для "чайников": автоматические выключателиМногие помнят советские автоматические выключатели — пробки. Они вворачивались вместо обычных керамических пробок в щиток электросчётчика. Это было компромиссное решение, которое, в общем-то, себя оправдывало. Ведь благодаря этому, пробки становились «многоразовыми», причём без изменения существующей конструкции электрощитка. А вообще изобретателем автоматических устройств защиты является компания АВВ, которая запатентовала малогабаритный автоматический выключатель в 1923 году. С тех прошло много времени, но принцип работы автоматического выключателя остался неизменным – восстановление его нормальной работоспособности одним движением руки.

Автоматический выключатель, — это коммутационный электрический аппарат, предназначенный для проведения тока в нормальных режимах и для автоматического отключения электроустановок при возникновении токов короткого замыкания и перегрузок. Самыми распространенными и популярными на сегодняшний день являются автоматические выключатели, которые монтируются на 35-миллиметровую DIN-рейку в распределительном щите.

Главным параметром автоматических выключателей является номинальный ток. Это ток, значение которого в конкретной цепи считают нормальным, т.е. на который рассчитано электрооборудование. Для электроустановок жилых зданий значение номинального тока (In) автоматического выключателя может составлять 6, 8, 10, 13, 16, 20, 25, 32, 40 , 63 А. Наиболее часто применяют автоматические выключатели в диапазоне 16 – 63А как для однофазных потребителей, так и трёхфазных. Так же существует такой параметр, как номинальное напряжение –220/230 В или 380/400 В.

Внешний вид однофазных и трёхфазного автоматических выключателей показан на рисунке:

Про электрические аппараты защиты для "чайников": автоматические выключатели

Автоматические выключатели разрывают цепь, когда ток в ней превышает допустимую величину. Такая ситуация возникает, когда включено больше разрешённого числа потребителей или при коротком замыкании. При этом, происходят различные процессы, из-за чего приходится использовать в автоматических выключателей два вида защиты — тепловую и электромагнитную.

При потреблении тока больше номинала не более чем в 3 раза, срабатывает тепловой расцепитель автоматического выключателя. Принцип его действия: цепь разрывает биметаллическая пластина, которая изменяет свою форму от нагрева проходящим током. Защитное устройство может довольно долго пропускать ток, немного превышающий номинальный, что позволит избежать ложных срабатываний, но при дальнейшем возрастании тока отключит нагрузку. Поэтому, тепловая защита обладает довольно большой инерционностью по отношению к превышениям тока

При значительно большем токе (при коротких замыканиях) инерционность защиты является большим минусом, потому для данного случая используют электромагнитный расцепитель. В отличии от теплового, он обладает мгновенным действием.

Электромагнитный расцепитель состоит из соленоида (электромагнита), сердечник которого ударяет в подвижный контакт и размыкает цепь. Но здесь не всё так просто. Ведь электромагнит должен сработать при определённом токе. Нижний порог, судя по тому, что тепловая защита срабатывает до 3 In, будет иметь именно это значение. А верхний порог? Вот здесь выплывает ещё одна характеристика АВ – тип автомата.

Различают автоматические выключатели трех типов — «В», «С», и «D». Автоматические выключатели типа «В» имеют срабатывание электромагнитного расцепителя в диапазоне от 3 до 5 In. Тип «С» имеет диапазон от 5 до 10 In. И наконец тип «D», срабатывает в диапазоне от 10 до 50 In. На конкретном примере это будет выглядеть следующим образом — если мы имеем два автомата на 25А класса «В» и «С», то при коротком замыкании первый отключится при достижении величины тока короткого замыкания от 75 до 125 А, а второй – от 125 А и выше. Ток короткого замыкания, с которым автоматический выключатель справляется без ухудшения эксплуатационных свойств, определяет «номинальную отключающую способность» — ещё одну характеристику автоматического выключателя. Чем лучше этот параметр, тем надежней выключатель. Процесс расцепления контактов происходит очень быстро, при этом ток короткого замыкания не успевает достичь максимального значения.

Автоматические выключатели «В» и «С» устанавливают в сетях жилых зданий. Тип «В» используют, если нет бросков тока, появляющихся из-за включения каких-либо двигателей. Тип «С» рекомендуется для защиты электроприемников с небольшими пусковыми токами. И последний тип «D» устанавливают в основном в помещениях промышленного назначения, где задействованы мощные двигатели.

Важным узлом любого автоматического выключателя является камера гашения дуги. Как вы понимаете, при коротком замыкании образовывается дуга, и какое короткое время она не существовала бы, её действие отрицательно сказывается на общей надёжности автоматического выключателя и, следовательно, сроке его службы. Камера гашения дуги состоит из набора параллельных, изолированных друг от друга, металлических пластин. В ней дуга разбивается на последовательность множества маленьких дуг. Они сразу же гаснут из-за небольшой величины напряжения между соседними пластинами. Это классическая схема построения «искрогасителей».

Кроме автоматического отключения, автоматический выключатель может отключаться и вручную. Поэтому автоматический выключатель называют коммутационно-защитным устройством. Ведь помимо свойств защиты, он предоставляет возможность обесточить цепь в ручном режиме, что необходимо при ремонте электрооборудования.

Выбирая автоматический выключатель, следует чётко знать параметры, о которых мы говорили выше – номинальное напряжение, номинальный ток и тип автомата. Маркировка автоматического выключателя должна содержать наименование или торговую марку изготовителя, значение номинального напряжения, номинальный ток, буквы B, C или D, обозначающей тип выключателя, номинальную отключающую способность в амперах и схему подключения, если правильный способ соединения трудно понять из внешнего вида автоматического выключателя.

Раздел 3. Защита и автоматика

Глава 3.1. Защита электрических сетей напряжением до 1 кВ

3.1.1. Настоящая глава Правил распространяется на защиту электрических сетей до 1 кВ, сооружаемых как внутри, так и вне зданий. Дополнительные требования к защите сетей указанного напряжения, вызванные особенностями различных электроустановок, приведены в других главах Правил.

3.1.2. Аппаратом защиты называется аппарат, автоматически отключающий защищаемую электрическую цепь при ненормальных режимах.

Требования к аппаратам защиты

3.1.3. Аппараты защиты по своей отключающей способности должны соответствовать максимальному значению тока КЗ в начале защищаемого участка электрической сети (см. также гл. 1.4).

Допускается установка аппаратов защиты, нестойких к максимальным значениям тока КЗ, а также выбранных по значению одноразовой предельной коммутационной способности, если защищающий их групповой аппарат или ближайший аппарат, расположенный по направлению к источнику питания, обеспечивает мгновенное отключение тока КЗ, для чего необходимо, чтобы ток уставки мгновенно действующего расцепителя (отсечки) указанных аппаратов был меньше тока одноразовой коммутационной способности каждого из группы нестойких аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса.

3.1.4. Номинальные токи плавких вставок предохранителей и токи уставок автоматических выключателей, служащих для защиты отдельных участков сети, во всех случаях следует выбирать по возможности наименьшими по расчетным токам этих участков или по номинальным токам электроприемников, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковые токи, пики технологических нагрузок, токи при самозапуске и т. п.).

3.1.5. В качестве аппаратов защиты должны применяться автоматические выключатели или предохранители. Для обеспечения требований быстродействия, чувствительности или селективности допускается при необходимости применение устройств защиты с использованием выносных реле (реле косвенного действия).

3.1.6. Автоматические выключатели и предохранители пробочного типа должны присоединяться к сети так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза предохранителя (автоматического выключателя) оставалась без напряжения. При одностороннем питании присоединение питающего проводника (кабеля или провода) к аппарату защиты должно выполняться, как правило, к неподвижным контактам.

3.1.7. Каждый аппарат защиты должен иметь надпись, указывающую значения номинального тока аппарата, уставки расцепителя и номинального тока плавкой вставки, требующиеся для защищаемой им сети. Надписи рекомендуется наносить на аппарате или схеме, расположенной вблизи места установки аппаратов защиты.

Выбор защиты

3.1.8. Электрические сети должны иметь защиту от токов короткого замыкания, обеспечивающую по возможности наименьшее время отключения и требования селективности.

Защита должна обеспечивать отключение поврежденного участка при КЗ в конце защищаемой линии: одно-, двух- и трехфазных — в сетях с глухозаземленной нейтралью; двух- и трехфазных — в сетях с изолированной нейтралью.

Надежное отключение поврежденного участка сети обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному току плавкой вставки предохранителя или расцепителя автоматического выключателя будет не менее значений, приведенных в 1.7.79 и 7.3.139.

3.1.9. В сетях, защищаемых только от токов КЗ (не требующих защиты от перегрузки согласно 3.1.10), за исключением протяженных сетей, например сельских, коммунальных, допускается не выполнять расчетной проверки приведенной в 1.7.79 и 7.3.139 кратности тока КЗ, если обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам проводников, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:

300% для номинального тока плавкой вставки предохранителя;

450% для тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку);

100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки);

125% для тока трогания расцепителя автоматического выключателя с регулируемой обратной зависящей от тока характеристикой; если на этом автоматическом выключателе имеется еще отсечка, то ее кратность тока срабатывания не ограничивается.

Наличие аппаратов защиты с завышенными уставками тока не является обоснованием для увеличения сечения проводников сверх указанных в гл. 1.3.

3.1.10. Сети внутри помещений, выполненные открыто проложенными проводниками с горючей наружной оболочкой или изоляцией, должны быть защищены от перегрузки.

Кроме того, должны быть защищены от перегрузки сети внутри помещений:

осветительные сети в жилых и общественных зданиях, в торговых помещениях, служебно-бытовых помещениях промышленных предприятий, включая сети для бытовых и переносных электроприемников (утюгов, чайников, плиток, комнатных холодильников, пылесосов, стиральных и швейных машин и т. п.), а также в пожароопасных зонах;

силовые сети на промышленных предприятиях, в жилых и общественных зданиях, торговых помещениях — только в случаях, когда по условиям технологического процесса или по режиму работы сети может возникать длительная перегрузка проводников;

сети всех видов во взрывоопасных зонах — согласно требованиям 7.3.94.

3.1.11. В сетях, защищаемых от перегрузок (см. 3.1.10), проводники следует выбирать по расчетному току, при этом должно быть обеспечено условие, чтобы по отношению к длительно допустимым токовым нагрузкам, приведенным в таблицах гл. 1.3, аппараты защиты имели кратность не более:

80% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией; для проводников, прокладываемых в невзрывоопасных производственных помещениях промышленных предприятий, допускается 100%;

100% для номинального тока плавкой вставки или тока уставки автоматического выключателя, имеющего только максимальный мгновенно действующий расцепитель (отсечку), — для кабелей с бумажной изоляцией;

100% для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависящей от тока характеристикой (независимо от наличия или отсутствия отсечки) — для проводников всех марок;

100% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для проводников с поливинилхлоридной, резиновой и аналогичной по тепловым характеристикам изоляцией;

125% для тока трогания расцепителя автоматического выключателя с регулируемой обратно зависящей от тока характеристикой — для кабелей с бумажной изоляцией и изоляцией из вулканизированного полиэтилена.

3.1.12. Длительно допустимая токовая нагрузка проводников ответвлений к короткозамкнутым электродвигателям должна быть не менее:

100% номинального тока электродвигателя в невзрывоопасных зонах;

125% номинального тока электродвигателя во взрывоопасных зонах.

Соотношения между длительно допустимой нагрузкой проводников к короткозамкнутым электродвигателям и уставками аппаратов защиты в любом случае не должны превышать указанных в 3.1.9 (см. также 7.3.97).

3.1.13. В случаях, когда требуемая допустимая длительная токовая нагрузка проводника, определенная по 3.1.9 и 3.1.11, не совпадает с данными таблиц допустимых нагрузок, приведенных в гл. 1.3, допускается применение проводника ближайшего меньшего сечения, но не менее, чем это требуется по расчетному току.

Места установки аппаратов защиты

3.1.14. Аппараты защиты следует располагать по возможности в доступных для обслуживания местах таким образом, чтобы была исключена возможность их механических повреждений. Установка их должна быть выполнена так, чтобы при оперировании с ними или при их действии были исключены опасность для обслуживающего персонала и возможность повреждения окружающих предметов.

Аппараты защиты с открытыми токоведущими частями должны быть доступны для обслуживания только квалифицированному персоналу.

3.1.15. Аппараты защиты следует устанавливать, как правило, в местах сети, где сечение проводника уменьшается (по направлению к месту потребления электроэнергии) или где это необходимо для обеспечения чувствительности и селективности защиты (см. также 3.1.16 и 3.1.19).

3.1.16. Аппараты защиты должны устанавливаться непосредственно в местах присоединения защищаемых проводников к питающей линии. Допускается в случаях необходимости принимать длину участка между питающей линией и аппаратом защиты ответвления до 6 м. Проводники на этом участке могут иметь сечение меньше, чем сечение проводников питающей линии, но не менее сечения проводников после аппарата защиты.

Для ответвлений, выполняемых в труднодоступных местах (например, на большой высоте), аппараты защиты допускается устанавливать на расстоянии до 30 м от точки ответвления в удобном для обслуживания месте (например, на вводе в распределительный пункт, в пусковом устройстве электроприемника и др.). При этом сечение проводников ответвления должно быть не менее сечения, определяемого расчетным током, но должно обеспечивать не менее 10% пропускной способности защищенного участка питающей линии. Прокладка проводников ответвлений в указанных случаях (при длинах ответвлений до 6 и до 30 м) должна производиться при горючих наружных оболочке или изоляции проводников — в трубах, металлорукавах, или коробах, в остальных случаях, кроме кабельных сооружений, пожароопасных и взрывоопасных зон, — открыто на конструкциях при условии их защиты от возможных механических повреждений.

3.1.17. При защите сетей предохранителями последние должны устанавливаться на всех нормально незаземленных полюсах или фазах. Установка предохранителей в нулевых рабочих проводниках запрещается.

3.1.18. При защите сетей с глухозаземленной нейтралью автоматическими выключателями расцепители их должны устанавливаться во всех нормально незаземленных проводниках (см. также 7.3.99).

При защите сетей с изолированной нейтралью в трехпроводных сетях трехфазного тока и двухпроводных сетях однофазного или постоянного тока допускается устанавливать расцепители автоматических выключателей в двух фазах при трехпроводных сетях и в одной фазе (полюсе) при двухпроводных. При этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах (полюсах).

Расцепители в нулевых проводниках допускается устанавливать лишь при условии, что при их срабатывании отключаются от сети одновременно все проводники, находящиеся под напряжением.

3.1.19. Аппараты защиты допускается не устанавливать, если это целесообразно по условиям эксплуатации, в местах:

1) ответвления проводников от шин щита к аппаратам, установленным на том же щите; при этом проводники должны выбираться по расчетному току ответвления;

2) снижения сечения питающей линии по ее длине и на ответвлениях от нее, если защита предыдущего участка линии защищает участок со сниженным сечением проводников или если незащищенные участки линии или ответвления от нее выполнены проводниками, выбранными с сечением не менее половины сечения проводников защищенного участка линии;

3) ответвления от питающей линии к электроприемникам малой мощности, если питающая их линия защищена аппаратом с уставкой не более 25 А для силовых электроприемников и бытовых электроприборов, а для светильников — согласно 6.2.2;

4) ответвления от питающей линии проводников цепей измерений, управления и сигнализации, если эти проводники не выходят за пределы соответствующих машин или щита или если эти проводники выходят за их пределы, но электропроводка выполнена в трубах или имеет негорючую оболочку.

Не допускается устанавливать аппараты защиты в местах присоединения к питающей линии таких цепей управления, сигнализации и измерения, отключение которых может повлечь за собой опасные последствия (отключение пожарных насосов, вентиляторов, предотвращающих образование взрывоопасных смесей, некоторых механизмов собственных нужд электростанций и т. п.). Во всех случаях такие цепи должны выполняться проводниками в трубах или иметь негорючую оболочку. Сечение этих цепей должно быть не менее приведенных в 3.4.4.

Принцип работы автоматических выключателей

Автоматические выключатели

Автоматический выключатель – коммутационный аппарат, используемый для защиты электрической сети от перегрузок и коротких замыканий.

Изделия делятся на три основных типа:

  1. Однополюсные – устанавливаются в однофазных сетях;
  2. Двухполюсные – используются одно- и двухфазных сетях;
  3. Трехполюсные – для сетей с тремя фазами;
  4. Четырехполюсные – применяются в трехфазных сетях, оснащенных системой заземления.

Ознакомиться с ассортиментом автоматических выключателей можно в каталоге компании «Электрофф». В продаже представлены надежные и мощные аппараты, способные обеспечить надежную защиту сети от сверхтоков.

Принцип работы

Работа автоматического выключателя в разных режимах осуществляется по следующему принципу:

  1. Нормальный режим

В процессе взвода рычага управления аппаратом выполнятся передвижение механизма, отвечающего за взвод и расцепление, в результате выполняется коммутация силовых контактов.

После активации коммутации ток проходит от питающего кабеля, который подсоединен к винтовому зажиму. Далее через этот зажим энергия проходит по контактам сначала к неподвижному, а после к подвижному. Затем ток следует через гибкую связь, электромагнитную катушку, снова через биметаллическую пластину и гибкую связь, в конце через фиксационный элемент к отходящей линии, которая осуществляет питание электрического прибора.

  1. Короткое замыкание

Принцип действия этого режима заключается в мгновенном отключении нагрузки электромагнитным расцепителем в случае возникновения короткого замыкания в цепи. Процесс работы выполняется по следующей схеме:

  • Если в сети наблюдается существенное превышение номинального тока, который проходит через электромагнитную обмотку, образуется мощное магнитное поле. В результате магнитный якорь, оснащенный подвижным контактом, оттягивается вниз образованным магнитным полем.
  • Якорь при опущении надавливает на рычаг спускового механизма, таким образом, происходит расцепление контактов, то есть прекращается подача тока.

Конструкция срабатывает мгновенно после возникновения короткого замыкания, то есть исключаются нежелательные последствия такой аварии.

Однако не исключатся образование дугового разряда между контактной группой. В таком случае дуга направляется в сторону дугогасительной камеры. При соприкосновении с пластинами происходит расщепление дуги – она проникает в полость камеры, а после затухает. Избыточное давление и образовавшиеся продукты горения выходят наружу через специализированное отверстие в корпусе автоматического выключателя.

  1. Перегрузка

В аппарате установлен тепловой расцепитель, отвечающий за перегрузки. Принцип работы автоматического выключателя при перегрузках заключается в следующем: в случаях, когда электроэнергия, проходящая через биметаллическую пластину, становится равной или превышает положенное значение, то происходит нагрев пластины, в результате она постепенно меняет форму (изгибается). При достижении определенного угла изгиба, она активирует нажатием на рычажок спусковой механизм, тем самым отключая подачу тока потребителям.

Терморасцепитель реагирует медленнее, чем магнитный выключатель. Срабатывание нуждается в большем промежутке времени, однако его легко настроить и отличается высокой точностью.

Автоматы защиты, зачем они нужны

Как таковые, автоматические выключатели не защищают человека, от токов утечки. Для этой цели служат УЗО или дифференциальные автоматы защиты. Правильно рассчитанный автомат защиты защищают электрический кабель, а следовательно саму групповую цепь от перегрева и короткого замыкания.

Автоматы защиты – устройство

Основой устройства автоматы защиты являются два расцепителя. Именно они реагируют на перегрузку и короткое замыкание в цепи. Согласно СП31-110–2003 во внутренних сетях квартиры применяются автоматы защиты с двумя типами расцепителя, тепловым и электромагнитным. Такие автоматы носят название автоматы с комбинированным расцепителем.

Автоматы защиты устройство

Тепловые расцепители служат для размыкания цепи при перегрузке.

Работают они следующим образом. Основа теплового расцепителя биметаллическая пластина. В нормальном режиме работы, то есть когда ток с цепи соответствует норме, биметаллическая пластина не работает. При увеличении тока в цепи, а возникает это при перегрузке или коротком замыкании, биметаллическая пластина деформируется и «щелкает» по механизму расцепления. Все цепь разомкнута, автомат выполнил свою задачу. После остывания и взведении рычага управления автомат опять готов к работе.

Так как процесс нагрева процесс не моментальный, то автоматы защиты срабатывают на перегрузку с временной задержкой, порой очень длительной.

Если для защиты групповой цепи ставить автомат защиты, только с тепловым расцепителем, то для защиты от короткого замыкания цепи требуется дополнительно установить плавкий предохранитель.

Вторым расцепителем в автомате защиты, является индукционный или электромагнитный расцепитель. Этот тип расцепителя срабатывают моментально. Предназначен индукционный для защиты электрической цепи от короткого замыкания.

Принцип работы индукционного расцепителя в следующем. Механизм расцепления это сердечник двигающийся внутри катушки. При нормальном режиме он замкнут. При аварийном режиме увеличение тока в катушке, приводит к втягиванию сердечника и цепь расцепляется.

Относительный недостаток индукционного расцепителя, это срабатывание при токах (токи отключения) значительно превышающих номинальные токи цепи. Такие токи могут возникать только при коротком замыкании (КЗ).

Значение тока отключения индукционного автомата зависит от типа покупаемого автомата защиты. О типах автоматов защиты чуть ниже по тексту.

Автоматы защиты по время-токовой характеристике

Не буду занимать ваше внимание теорией, просто скажу, что время-токовая характеристика “придумана” за тем, чтобы разделить автоматы защиты по месту их применения. А за основу взяты следующие вычисления тока защиты от короткого замыкания (КЗ):

  • Тип B: Ток защиты (отключения) при КЗ от 3 до 5 значений номинального тока в цепи.
  • Тип C: Ток защиты (отключения) при КЗ от 5 до 10 значений номинального тока в цепи.
  • Тип D: Ток защиты (отключения) при КЗ от 10 до 20 значений номинального тока в цепи.

На самом деле для практики, приведенные выше значения токов отключения, не имеют особого значения. Для практики, большее значение имеет места применения автоматов защиты в зависимости от типа: B; C; D; K; Z. Смотрим таблицу.

Автоматы защиты

Разделение автоматов на типы, происходит по их характеристикам зависимости токов отсечки и времени отсечки, называемых время-токовые характеристики. Для электросети квартиры актуальны автоматы типа B и C.

Тип автомата вы можете увидеть, при покупке автомата, на его корпусе в связке с номинальным током. Например: C16A. Это значит автомат защиты типа C на номинальный ток 16 Ампер. Или B32A – это автомат типа B на 32 Ампера.

Автоматы защиты, тип B

Практика применения знаний про автоматы защиты

Например. У вас в квартире групповая цепь из 8 розеток для устройств со средней мощностью 300 Вт. Рассчитаем минимально допустимый ток срабатывания автомата защиты и выберем его тип.

  • I номин.= 300×8⁄220=10,9 А;
  • I расчетная автомата защиты= 10,9×1,45=15,8 А.
  • Розеточная группа, значит тип автомата C.

Рассчитанный таким образом расчетный ток автомата защиты, не может служить основанием для установки автомата защиты, C16A. В окончательном расчете автомата защиты нужно учесть сечение токопроводящих жил кабеля и способ их прокладки. Сечение жил связать с допустимым током нагрузки на кабель, по нему рассчитать ток автомата защиты, сравнить его с расчетным током автомата защиты, как в этом примере, и только потом определить номинал автомата защиты.

голоса
Рейтинг статьи
Читайте так же:
Выключатель нагрузки 380в 20а
Ссылка на основную публикацию
Adblock
detector