Gutdver.ru

Отделка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемы подключения розеток в квартире и доме

Схемы подключения розеток в квартире и доме

Схемы подключения розеток в квартире и домеНа практике существует масса способов соединения электрических розеток с электропроводкой. При их выполнении могут преследоваться разные цели, от жесткой экономии материалов и средств до надежной, длительной и безопасной работы оборудования.

Учитывая возрастающие потребности населения на использование мощных электроприборов в быту, следует остановиться на рассмотрении наиболее благоприятной электрической схемы для домашней сети, обеспечивающей максимальную безопасность при эксплуатации. Она должна быть разделена на две составляющие системы:

силовую часть, обеспечивающую подвод электроэнергии к бытовым приборам через розетки;

осветительную систему, отделенную от работы силовой части.

Для создания силовых цепей внутриквартирного щитка монтируются автоматические выключатели по числу необходимых присоединений. От каждого автомата прокладывается кабель к ответвительной коробке, одной или нескольким. Они соединяются последовательно, но их количество не должно быть более четырех. Внутри каждой коробки подключается еще один кабель, осуществляющего подвод напряжения к розетке.

Таким образом, от одной ответвительной коробки подключается только одна, единственная розетка, не больше.

Схема силовой части электропроводки квартиры

Рис. 1. Схема силовой части электропроводки квартиры

Осветительная система тоже начинается с автоматического выключателя в квартирном щитке. От него кабель освещения идет к ответвительной коробке одной, а затем следующей. Каждый комнатный светильник со своим выключателем соединяется кабелем через клеммы индивидуальной коробки.

Схема осветительной части электропроводки квартиры

Рис. 2. Схема осветительной части электропроводки квартиры

Для проводов силовой части и освещения используются разные кабели, которые должны внешне отличаться друг от друга цветом слоя изоляции. Это позволит в будущем быстро определять нужную цепь электропроводки.

Устройство ответвительной коробки может быть разным, но при эксплуатации удобна конструкция с четырьмя соединительными колодками, оборудованными двумя, а лучше тремя контактами.

В силовую схему розетки подключаются тремя проводами и в соединительной коробке для них достаточно использовать столько же клемм, а для работы осветительной цепи требуется большее количество контактов: четыре для одноклавишного выключателя и пять для двухклавишного.

Число используемых бытовых электроприборов в квартире влияет на количество розеток. В некоторых комнатах необходимо иметь их более десяти. При этом использования удлинителей, тройников и двойников следует избегать, по соображениям безопасности. Поэтому рекомендуется устанавливать на стену специальные блоки, которые могут включать до четырех розеток.

В таком блоке все контакты на заводе надежно соединены между собой в единую конструкцию и выведены на внешние клеммы для подключения проводов. Устройство рассчитано на максимальную нагрузку, указанную производителем, и поэтому считается при соединении шлейфом для квартирной проводки как одна розетка.

На кухне при пользовании несколькими мощными электроприборами, например, посудомоечной машиной и электроплитой или электрическим чайником может возникнуть нагрузка, превышающая допустимую мощность использования розеточного блока. Это предпосылка для возникновения аварии. Такие конструкции на кухне не устанавливают.

В продаже есть розеточные конструкции, которые выглядят как единый блок, но им не являются. У них в едином корпусе смонтированы единичные розетки, которые необходимо подключать проводами к защитному автомату. Но на практике это делать довольно сложно.

Как выход из создавшейся ситуации предлагается близкорасположенные розетки подключать между собой параллельно проводами, но не использовать их для работы энергоемких потребителей. Число таких розеток не должно быть больше четырех. В исключительных, крайних случаях допускается подключать пятую розетку. А для мощных потребителей электроэнергии создавать соответствующую силовую цепь от индивидуального автоматического выключателя.

Подробее про особенности подключения мощных электропотребителей читайте здесь: Как установить и подключить розетку для плиты и стиральной машины

Вариант схемы силовой электропроводки квартиры

Рис. 3. Вариант схемы силовой электропроводки квартиры

При такой схеме в одной комнате может быть проложены две отдельные магистрали силовой цепи.

Можно ли соединять розетки между собой

Замена розетки дело простое, но не всегда всё идет как вам хочется. Часто происходит так, что нельзя просто взять и подключить новую розетку, потому что не хватает длины старых проводов. Они могут обломиться или же просто конструкция новой розетки отличается и не получается нормально зажать провода. В этой статье мы рассмотрим способы удлинения коротких проводов.

Жилы проводов

Провода и кабеля могут иметь однопроволочные жилы – это такие жилы, которые состоят из одной цельной проволоки их называют жесткими или монолитными жилами. При частом сгибании могут переломится. Другой вид – многопроволочные жилы – они мягкие, состоят из нескольких тонких проволочек. Хорошо гнуться такие провода часто называют многожильными или гибкими. Количество проволочек зависит от класса гибкости жилы – чем он выше, тем больше проволочек.

Как это касается вопроса удлинения проводов в розетке? Дело в том, что от типа жил зависит способ их соединения. Многопроволочные жилы не соединяют с помощью винтовых клеммников или болтами, так как они не предназначены для этого из-за сдавливания проволочек не получится обеспечить хороший контакт. Что делать мы расскажем дальше.

Клеммники и гильзы

Для того чтобы удлинить провод в розетке нужно просто соединить «огрызок» старого провода, который торчит из стены или подрозетника с новым больше длины. Иначе нужно прокладывать новый провод от распределительной коробки той, длины которая вам нужна – но это, согласитесь, затратно и глупо в большинстве случаев.

Различают два основных типа клеммников:

1. Зажимные. К таким относятся современные клеммники типа ВАГО. Они состоят из подпружиненного контакта и изолированного корпуса. В принципе, зажимные клеммники подходят для использования с проводами с многопроволочными жилами.

2. Винтовые – состоят из изолированного корпуса и контакта, который зажимается винтом. В зависимости от конструкции клеммника может быть либо металлическая трубка, наподобие гильзы с винтами в которую вставляются концы проводов, либо винтовые клеммы, расположенные на изолированном основании, например, карболитовом.

3. Гильзы и кабельные наконечники – это электротехнические изделия предназначенные для соединения кабелей с помощью обжимки. Обжимка производится специальным прессом или клещами (в зависимости от диаметра гильзы). Некоторые электрики советуют обжимать гильзы или наконечники с помощью плоскогубцев. Так делать нельзя!

Вернее, как бы можно, но только для временного пользования или в местах, которые не несут важной нагрузки, например, для низковольтного слаботочного оборудования, типа источников питания для экспериментов и других учебных установок. То есть в тех местах, когда вы знаете на что идете.

Гильзы и наконечники, используемые для постоянного пользования должны обжиматься специальным инструментом.

Логичным будет вопрос «Почему нельзя обжимать гильзы плоскогубцами?». Посмотрите на гильзу – она круглая, провод тоже круглый, соединение двух проводов овальное или круглое (если они скручены). Что это значит? Всё очень просто – когда вы обжимаете плоскогубцами гильза стремится стать плоской – тогда образуются пустоты в гильзах, и даже если сейчас провод вроде бы зажат неплохо, то через время он может уйти в пустоты. Контакт ослабнуть и провод выскочит из гильзы.

К чему это приведет? Плохо контакт греется, при нагреве начинает портиться изоляция, жилы оголяются – рано или поздно произойдет возгорание или короткое замыкание.

Здесь же нужно упомянуть колпачки типа СИЗ. Они состоят из изолированного колпачка внутри которого расположена пружина, она нужна для сжатия и удержания скрутки.

Как правильно обжимать гильзы

Инструмент для обжимки гильз представляет собой либо клещи, либо различного рода пресса. В том числе оправки для обжимки гильз молотком. В таких устройствах жилу укладывают в П-образный проем, после чего зажимают винтом, либо пассатижами.

Либо бьют кувалдой в результате чего обжатая гильза имеет форму между круглой и квадратной, что обеспечивает хорошую площадь контакта для протекания тока и удержания жилы.

Форма матриц бывает разной, некоторые её разновидности вы видите на рисунке ниже. В зависимости от их формы на гильзе или наконечники появляются соответствующие желобки или следы различных форм.

Для каждого из видов наконечников нужны свои профили матрицы.

Более совершенными считают опресовщики, которые обжимают гильзу с разных сторон, подобно действию диафрагмы фотоаппарата. Различают в основном гексагональную (шестигранную) обжимку (отлично) и квадратную четырёхсторонюю (хуже).

Видео: обзор инструмента для обжимки наконечников типа НШВИ с четырёхсегментной матрицей для квадратного обжима – отличное решение для подключение мягкого провода с многопроволочной жилой к автоматам, розеткам или для простого наращивания проводов в распредкоробках и подрозетниках.

Но из-за их конструкции не всегда удобно выполнить обжим проходного соединения. Зато с гильзами и наконечниками на конце кабеля справляются отлично.

Пайка и медь

Соединение методом пайки подходит если нужно удлинить медный провод. Однако у этого способа есть недостаток: если у вас нет возможности обесточить отдельно розеточную группу – нужен газовый или аккумуляторный паяльник. Если такого нет – нужно проситься к соседям. Можно еще нагревать жало горелкой или на конфорке газовой плиты и паять провода пока не остыло.

Пайка разрешена современными правилами и хорошо подходит для удлинения и соединения проводов. В отличие от сварки – во время пайки не образуется брызг, и вы не повредите обои или другой вид покрытия стен.

Пайка меди может осуществляться припоем и канифолью, наиболее универсальным припоем является ПОС-61, кстати он часто продается в виде трубки с канифолью – что ускоряет пайку и лужение. Кроме канифоли могут использоваться и флюсы марки ЛТИ-120 и другие. Не используйте для лужения электропроводки кислоты и другие активные флюсы, чтобы избежать выгнивания контактов в соединениях под действием активных веществ.

Соединение коротких проводов

Выше были перечислены основные способы соединения проводов, но какой из них лучше подойдет для удлинения концов жил в розетке.

— Ограниченное место – короткие концы находятся в подрозетнике, где и без того мало место. Поэтому удобно подлезть туда хотя бы плоскогубцами не всегда получается.

— Если провода медные нужно действовать с минимумом изгибов, чтобы избежать излома жил.

— Перегревать провода нельзя, потому что на и без того коротких концах недопустимо повреждение изоляции – восстановить будет сложно, а в особо запущенных случаях невозможно без снятия покрытия стен.

Рассмотрим способы соединения проводов в этих условиях:

1. Пайка. Если в стене проложен медный провод – вы можете припаяться к его концу. Не паяйте провода под напряжением! Проблемы возникают если вы не можете обесточить комнату отдельно. Одним из возможных вариантов является запитать отдельную розетку с «верхних» клемм вводного автомата, которые находятся со стороны ввода и всегда под напряжением. Или разогреть паяльник от сети, после чего отключить ввод и быстро припаять одну жилу, затем таким же способом вторую.

2. Винтовые клеммники

Если места мало, то можно снять с клеммника пластиковую оболочку, а после монтажа заизолировать. Можно использовать и с медными и с алюминиевыми проводами.

В ЭТОМ СЛУЧАЕ ЖИЛА ДОЛЖНА БЫТЬ МОНОЛИТНОЙ ИЛИ МНОГОПРОВОЛОЧНОЙ, НО ОБЖАТОЙ НАКОНЕЧНИКОМ НШВИ

3. Зажимные клеммники, например, WAGO

Это основные способы соединения проводов, разрешенные ПУЭ и безопасные для постоянного использования. Главное – избегайте прямого контакта алюминия и меди и не делайте скруток в любом их виде и проявлении.

Кстати в этом видео показан не совсем стандартный, но вполне хороший и интересный метод наращивания проводов, на примере выключателя и винтовых клеммников. Он подойдет если концы проводов совсем короткие, а места вокруг очень мало.

Заключение

Мы рассмотрели основные способы наращивания проводов в розетках и выключателях и других местах со стесненными условиями. Надеюсь эта статья была вам полезна. Делитесь своими идеями и опытом в комментариях.

Ранее ЭлектроВести писали об опыте перевода производственного цеха на питание от солнечной электростанции. Мощность солнечных панелей составляет 27 000 Вт.

Какие ошибки допускают новички при соединении розеток между собой

Ремонт

Для обеспечения функциональности и комфорта каждый дом должен быть подключен к электрической сети. Проводить работы по подключению розеток должны только профессионалы, ведь любые недочеты могут привести к серьезным последствиям в виде замыкания проводки или возгорания.

Розетки могут быть подключены двумя способами:

  • Отдельно;
  • К одному источнику при помощи шлейфа.

Самой распространенной ошибкой во время подключения является соединение розеток с заземляющим проводом. В данном случае соединение должно выполняться только при помощи отдельного ответвления. Только так можно гарантировать надежность и безопасность контакта и избежать последствий в виде его случайного разрыва.

Как соединить розетки в доме

Если розетки в доме не соединять шлейфом, то работы могут растянуться на длительный период времени и потребовать не только специальных навыков, но и достаточно большого финансирования. Поэтому использование шлейфа является целесообразным и проверенным решением.

Его использование позволяет параллельно подключить все розетки к одной электрической сети и равномерно распределить между ними напряжение. В данном случае монтаж электропроводки можно выполнять, как открытым, так и закрытым способом.

Второй метод является более предпочтительным с эстетической точки зрения, в то время как устранять любые неполадки гораздо проще, если электропроводка видна не вооруженным глазом, а не спрятана в специальных коробах или под обоями.

Инструменты для проведения работ

Для того чтобы соединить между собой розетки в доме нужно использовать специальные инструменты.

  • Лазерный или гидравлический уровень;
  • Перфоратор;
  • Отвертки;
  • Кусачки;
  • Канцелярский нож;
  • Карандаш для выполнения разметки.

В процессе проведения работ важно не допустить еще одной распространенной ошибки. Все кабеля – нулевой, фазный и заземляющий, нужно подключать строго параллельно. При подключении рекомендуется использовать плоско-пружинный контакт, который позволит создать прочное соединение и избежать внезапного отключения розеток от сети.

Важно помнить о том, что метод соединения розеток шлейфом можно использовать только в случае гарантированной целостности нулевого проводника РЕ, играющего роль защитного элемента в системе. Во время выполнения работ следует обязательно обезопасить себя от возможного поражения электрическим током.

«Мы уже все взорвали заранее»

В жаркий июньский день в Мытищах гремят взрывы, заливаются сирены и пляшут языки огня. Идея «взрывать ради безопасности» звучит как оксюморон, вроде «воевать за мир» или «пить за трезвость». Но при самих испытаниях никто не пострадал, а в будущем их результаты помогут избежать новых жертв и сделать новый шаг к «зеленым» технологиям — водородным двигателям. Рассказываем об экспериментах, которые проводились в Институте комплексной безопасности в строительстве МГСУ совместно с Центром компетенции НТИ при ИПХФ РАН.

Дорога к водородному транспорту

Вначале сделаем небольшое отступление и расскажем, что это за зверь такой, водородный двигатель. Мало кто знает, но первый прототип автомобиля с двигателем внутреннего сгорания, созданный в начале XIX века французом Франсуа де Ривазом, работал на смеси водорода с кислородом, которую надо было поджигать вручную. Но если концепты транспорта на водороде появились даже раньше, чем все остальные, почему они не прошли такую же эволюцию, как и привычные нам машины, ездящие на дизеле, пропане или бензине? Первые водородные автомобили были примитивны и ездили со скоростью три километра в час на очень маленькие расстояния, поэтому коммерческого успеха машины де Риваза и его последователей не добились.

Водородный автомобиль де Риваза

Массовый интерес к водородному транспорту появился только в середине прошлого века, когда человечество осознало, что запасы нефти не бесконечны, да и атмосфера от выбросов углерода страдает. А кроме того, со времен де Риваза появился принципиально новый способ использования водорода — не сжигать его в двигателе, а окислять в топливном элементе с выделением электричества. Но и в 1950-1960-х годах водород «не взлетел» — слишком большими и сложными в производстве оказались топливные элементы. Точнее — он только что и взлетел: вся американская космическая программа строилась на водородных топливных элементах.

Казалось бы, если со второй попытки эта технология не стала массовой, надежд у нее мало. Однако это неверное впечатление. Как рассказал руководитель Центра компетенций НТИ «Новые и мобильные источники энергии» при ИПХФ РАН профессор Юрий Добровольский долгое время главным сдерживающим фактором была сложность хранения и безопасной перевозки этого вида топлива. Водород в газообразном состоянии, даже сжатый, обладает очень низкой плотностью (стандартный баллон весит примерно в тридцать раз больше, чем водород, который можно в него закачать), а в сжиженном виде он существует при узком диапазоне крайне низких температур.

К тому же при взрывах водорода металлические баллоны разлетаются на осколки, которые могут наносить тяжелые ранения. В последнее время технологии хранения водорода продвинулись вперед — к примеру, появились новые углепластиковые баллоны, легкие, более безопасные и относительно недорогие. Такой баллон показали и журналистам в МГСУ специалисты из Центра компетенций.

Слева: водородный композитный баллон

Пока водородный транспорт был в застое, росла популярность электромобилей. Транспорт в крупных развитых городах все чаще становится электрическим, чтобы уменьшить выбросы углерода и снизить нагрузку на окружающую среду. Европейские столицы соревнуются друг с другом в экологичности, да и Москва обзавелась электробусами, закупив более 500 единиц из 2000 запланированных. В Норвегии электромобили опередили аналоги по продажам. Но такой транспорт имеет и недостатки: у электромобилей очень маленький пробег после зарядки, которая может занимать больше десяти часов в обычном режиме «от розетки» и больше часа на специализированной заправке.

В большинстве регионов России с ее огромными расстояниями это неприемлемо, поскольку инфраструктуры для подзарядки можно не найти на протяжении сотен, а то и тысяч километров. Водородный автомобиль, благодаря большей удельной энергоемкости топливного элемента, может на одной заправке проехать 600–1000 километров реальных дорог, а заправляется он за 4–5 минут. Поэтому в области водородных технологий, которые переживают новый расцвет, наша страна может выйти в лидеры. Есть и еще одна проблема с электромобилями — возгорания огромных батарей. В среднем для того чтобы потушить один современный электромобиль, нужно до 11 пожарных расчетов, а поскольку в ячейках некоторых литий-ионных аккумуляторов выделяется кислород, их потушить в принципе невозможно.

«Это безопаснее других видов топлива, это наше завтра»

Почему же водородом и взрывами заинтересовались в строительном вузе? «Одно из важнейших направлений наших исследований — взрывобезопасность строительства, — поясняет ректор МГСУ Павел Акимов. — Мы изучаем безопасность в области строительства при всех возможных видах воздействий на здания. В нашем научно-техническом комплексе трудятся более 700 человек, 300 из них — инженерно-технические работники». В лабораториях с уникальным оборудованием инженеры изучают взрывобезопасность разных материалов и создают огнестойкие конструкции. «Транспорт в динамическом движении, инфраструктура, которая их питает, — это строительные конструкции, и при их неправильном проектировании возникают серьезные последствия», — предупреждает профессор МГСУ Сергей Цариченко.

На заправках, особенно с новым типом топлива, эти параметры играют решающую роль. В общественном сознании водород с кислородом превращается в гремучую смесь (ее так и называют — гремучим газом), которая действительно воспламеняется от малейшей искры. Но разве не то же самое происходит со смесью пропана и бутана или бензином? Катастрофы на заправках, взрывы бензовозов часто случаются со всеми видами топлива, но только водород окружен огромным количеством страшилок. Он ассоциируется и с водородной бомбой, и с терпевшими крушение дирижаблями. Но во всех этих случаях газ признали без вины виноватым: в термоядерном оружии на самом деле используется другой изотоп, дейтерий, да еще и в соединении с литием, а дирижабль, давший максимальное количество жертв, и вовсе был наполнен гелием. Шансы же выжить при аварии самолета гораздо ниже, чем при падении дирижабля.

Для понимания, почему так происходит, нужно учитывать свойства этих веществ. Поскольку водород легкий и текучий, он поднимается вверх со скоростью 20 м/с и быстро рассеивается в атмосфере (более подробно о сравнении безопасности разных видов топлива можно прочитать в научной статье).

«Пропан тяжелее воздуха (молярная масса — 44 против 29), он будет скапливаться внизу, поэтому вероятность взрыва будет выше. У водорода вдвое выше скорость детонации, но взрыв проходит не так разрушительно — после него почти ничего не загорается», — рассказал заместитель руководителя Центра компетенций НТИ Алексей Паевский. Более того, при горении водорода продуктом будет… вода, а не угарный газ, углекислый газ или ядовитые вещества.

В доказательство своих слов ученые из Центра компетенций НТИ и МГСУ продемонстрировали взрывы стехиометрической смеси водорода с кислородом, пропан-бутановой смеси и бензино-паровоздушной смеси. Для изучения последствий взрыва важна не только вероятность самого взрыва, но и его характеристики: скорость ударной волны, количество выделяемого тепла. Журналисты наблюдали за процессом с почтительного расстояния. «Мы за несколько дней до вас все уже взорвали, проверили», — приободряет Алексей Паевский.

Водородно-кислородная смесь при детонации издавала высокий звук из-за большой скорости ударной волны, но вспышка огня была слабой и практически сразу погасла. Пропан-бутановая смесь горела сильнее, но ярче, и дольше всего полыхал бензин.

«Любое горючее в узком пространстве опасно, хотя бензиновая заправка опаснее водородной. Безопасность водородных заправок выше, если строить их в автопарках, отдельно стоящим зданием, специально обучать персонал для обслуживания. Это безопаснее других видов топлива, это наше завтра», — подытожил Юрий Добровольский.

Четвертым, «бонусным» экспериментом стал взрыв в большой камере с двойным стеклопакетом с одной стороны и узким регулируемым отверстием в другой: такие исследования помогают понять, выбьет ли взрыв стекла и разрушит ли стены.

Другие лаборатории МГСУ, по которым провели журналистов, тоже занимаются разрушающими воздействиями: изучают истирание асфальтового покрытия на дорогах, проверяют прочность крупногабаритных конструкций при давлении, тряске, ударах с разных сторон. Отдельной гордостью университета оказался бассейн для моделирования волновых воздействий на берегу или на шельфе морей и одна из самых больших в стране климатических камер, используемых для строительства.

«В России водород примерно в десять раз дороже, чем в Европе»

Дорого ли обойдется переход на водородное топливо? На этот вопрос нашему корреспонденту ответил Юрий Добровольский. «Мы сравнили дизельный автобус, электробус и водородный автобус тех же размеров. Даже сейчас водородный автобус выгоднее электробуса — и это с учетом полного жизненного цикла, куда входят затраты на ремонт и заправку. Эксплуатационные расходы для водородных автобусов близки к нулю. Но, к сожалению, в России водород очень дорогой — примерно в десять раз дороже, чем в Европе. Если цена за водород будет приемлемая для автотранспорта (в районе 4–5 долларов килограмм), то он выиграет у дизеля».

Ученый признался, что не верит, что водородный автомобиль Toyota Mirai будет стоять в каждом дворе. Но в том, что водородные двигатели нужны в коммунальном хозяйстве, городском транспорте и в дальних перевозках, он не сомневается. В отличие от электробусов, заправка водородного автобуса проходит очень быстро, и требуется она всего раз в день.

Производство водорода сегодня — это многотоннажные промышленные масштабы. Что же мешает нам наладить инфраструктуру водородного транспорта? Самым старым и одним из самых дешевых методов считается пропускание паров воды над углем при высокой температуре. Самый чистый, «зеленый» способ — электролиз воды с использованием возобновляемых источников энергии, то есть ее разложение при помощи электричества, но из-за затрат этого самого электричества он пока считается самым дорогим. Компромиссом между величиной углеродного следа и себестоимостью стал «голубой» способ — конверсия метана с последующей утилизацией выделившегося углекислого газа. Чтобы все не закончилось на кучке энтузиастов, купивших водородные автомобили ради интереса, этот процесс в России нужно масштабировать, а для этого требуется поддержка государства.

По словам экспертов, сегодня водородная энергетика не развивается без участия государства ни в одной стране мира. И речь даже не только о финансовой помощи — в российских нормах регулирования, связанных с водородным транспортом, сейчас очень много пробелов, которые касаются и правил безопасности, и стандартов эксплуатации. Чтобы устранить их и объяснить населению, что водород — не самое опасное топливо, понадобится не один год. Будем считать, что публичные эксперименты в МГСУ — хорошее начало.

Правильный ответ обведите кружком. 1.С помощью настольного сверлильного станка можно:
1.Накернить деталь.
2.Проточить отверстие.
3.Просверлить отверстия в деревянных, металлических и пластмассовых деталях.
4.С помощью одного сверла сделать несколько отверстий.

2.Лобзик предназначен:
1.Для строгания древесины.
2.Для вырезания деталей сложной формы из полосовой стали.
3.Для пиления деревянных брусков.
4.Для выпиливания по внешнему и внутреннему контуру
деталей из фанеры и дерева.

3.С помощью рубанка можно выполнить следующую операцию:
1.Сверление.
2.Строгание.
3.Шлифование.
4.Полирование.

4.Проводниками электрического тока являются:
1.Все виды пластмасс и земля.
2.Золото, серебро, каучук и стекло.
3.Все металлы, вода, земля, человек.
4.Лаки, краски и эмали.

5.Понятие о форме, размерах и материале изготовления детали дает:
1.Шаблон.
2.Технический чертеж, эскиз детали.
3.Развертка.
4.Художественный рисунок.

6.Технологическая карта разбивает процесс изготовления изделия на:
1.Операции.
2.Этапы.
3.Очередность.
4.Виды деятельности.

7.Токарный станок по дереву предназначен:
1.Для обработки металла резанием.
2.Для фрезерования пазов и отверстий овальной формы.
3.Для шлифования и полирования деревянных деталей.
4.Для цилиндрического, конического и фасонного точения деталей из дерева.

8.Прежде чем приступить к работе на токарных станках необходимо:
1.Поупражняться в управлении станком.
2.Изучить устройство и назначение основных частей станка.
3.Пройти инструктаж по технике безопасности.
4. Выполнить все перечисленные условия.

9.Заготовка для токарного станка по дереву должна быть:
1.Туго зажата на станке, надежно закреплена.
2.Приблежена к круглой форме, не болтаться при вращении.
3.Круглой формы, без трещин и сучков, прочно и надежно закреплена на станке.
4.Выбрана из мягкой породы древесины.

10.С помощью зубила можно выполнить следующую операцию:
1.Резание металла.
2.Рубку металла и проволоки.
3.Опиливание.
4.Сверление и зенкование.

11.Электрические лампочки можно соединить между собой:
1.Последовательно, параллельно, комбинированно.
2.Как хочешь.
3.Концы с концами и пучком.
РЕКЛАМА

4.Тычком и колечком.

12.На токарно-винторезном станке выполняются следующие операции:
1.Точение и сверление.
2.Заточка резцов, нарезание резьбы.
3.Проточка, подрезание, отрезание, сверление, расточка,
нарезание резьбы.
4.Снятие слоя металла проходным резцом до необходимого
размера.

13.Измерительные инструменты для работы на токарно-винторезном станке это:
1.Кронциркуль и линейка.

2.Штангенциркуль.
3.Угольник и микрометр.
4.Все перечисленные инструменты.

14.Основными элементами шипового соединения деревянных деталей являются:
1.Разъемы и выемки.
2.Пазы различной формы.
3.Шип и проушина.
4.Разметка по шаблону.

15.Прежде чем произвести ремонтные работы с электроприбором
(настенная лампа) самостоятельно необходимо:
1.Доложить учителю о неисправности, вызвать электрика.
2.Отключить прибор от электрического тока, вынув вилку из розетки.
3.Вывернуть пробки, найти и устранить неисправность.
4.Устранить неисправность, проверить работу лампы.

16.Какой вид пиломатериалов используется при установке стекол в оконной раме?
1.Обналичка.
2.Плинтус.
3.Штапик.
4.Рейка.

17.К профилям сортового проката относятся:
1.Квадрат, полоса, круг.
2.Шестигранник, уголок, рельс.
3.Швеллер, треугольник.
4.Все названные виды.

18. Технологическая карта включает в себя:
1.Название и последовательность работ.
2.Эскизы операций.
3.Номера и последовательность операций, эскизы обработки, оборудование, приспособления и инструменты.
4.Материал, количество деталей, станочное оборудование, необходимые инструменты.

19.Ножовочное полотно относится к:
1.Лобзику.
2.Слесарной ножовке.
3.Ножовке по дереву.
4.Механической пиле.

20.При опиливании мелких деталей или зачистке в трудно доступных местах применяются напильники:
1.Плоские, круглые и ромбические с двойной насечкой.
2.Рашпили.
3.Круглые, полукруглые, трехгранные с одинарной насечкой.
4.Надфели.

голоса
Рейтинг статьи
Читайте так же:
Как сделать коробку для розетки
Ссылка на основную публикацию
Adblock
detector