Gutdver.ru

Отделка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет повышения температуры внутри корпуса ОЩВ с номинальной нагрузкой отходящих линий (2007)

Расчет повышения температуры внутри корпуса ОЩВ с номинальной нагрузкой отходящих линий (2007)

Современные щитки ОЩВ выпускаются с комплектацией модульными автоматическими выключателями, которые устанавливаются на рейку. Комплектация может включать защиту от перегрузки и короткого замыкания, в нее может быть дополнительно введена дифференциальная защита. Разводка выполняется компактными соединительными шинами. Изменилась и схема питания с TN-C — с общим защитным и рабочим нулевым проводом — на TN-S — с разделенными защитным и рабочим нулевыми проводами. Для этого в схему ОЩВ были введены две сборные шины N — нулевая рабочая и PE — нулевая защитная. У корпусов может быть две степени защиты — IP31 или IP54.

1.jpg

Щитки ОЩВ различных производителей имеют отличия, определить которые с первого взгляда не всегда возможно. Но существует критерий, с помощью которого можно оценить надежность и качество любого ОЩВ. Это величина повышения температуры внутри корпуса ОЩВ при номинальной нагрузке отходящих линий. В чем причина выбора именно такого критерия? Дело в том, что температура настройки модульных автоматических выключателей — +30оС. Их номинальные параметры при большей температуре снижаются, и тепловой рас-цепитель способен срабатывать при токах меньше номинального на 10. 20. 30% (рис. 1).

Нагрев соседними модульными автоматическими выключателями также снижает ток несрабатывания (рис. 2).

Ток неотклю-чения для размещенных рядом друг с другом автоматических выключателей в зависимости от их количества (n) и температуры окружающего воздуха определяется по формуле:

I = 1,13 In Kn Kt,

где In — номинальный ток при температуре настройки тепловых расцепителей 30оС (указанный на маркировке);

Kn — коэффициент нагрузки в зависимости от количества полюсов;

Kt — коэффициент нагрузки в зависимости от температуры окружающего воздуха.

И, следовательно, щиток будет недоиспользован по мощности нагрузки.

С помощью методики известной фирмы «KLINKMANN» можно сделать точный расчет превышения температуры:

— превышение температуры внутри корпуса ОЩВ, K;

Р — суммарная мощность тепловыделения установленных модульных автоматических выключателей, Вт;.

S — расчетная поверхность теплоотвода корпуса ОЩВ, м2; Считается по формуле: S=1,8хВх(Ш+Г)+1, 4хШхГ (В-высота, Ш-ширина, Г-глубина).

K — коэффициент теплопередачи материала корпуса ОЩВ, Вт/м2 (для навесного корпуса из листовой окрашенной стали: K=5,5).

2.jpg

Чтобы продемонстрировать последствия повышения температуры внутри корпуса, мы взяли для сравнения по несколько ОЩВ двух крупных российских производителей. Все ОЩВ укомплектованы автоматическими выключателями TM IEK ВА47-29 и ВА47-100 (показатели мощности тепловыделения этих автоматов даже ниже, чем допускает ГОСТ — см. рис. 3).

Значения всех ОЩВ мы подставили к вышеприведенной формуле «KLINKMANN». На графике (рис. 4) видно, каким образом проявляется разница характеристик образцов ОЩВ:

— Значения превышения температуры в корпусах ОЩВ совпадают у ОЩВ-6, ОЩВ-9 и ОЩВ-18. У этих изделий совпадают и номиналы автоматических выключателей и марки корпусов.

— Несовпадение значений превышения температуры для двух образцов ОЩВ-12 при одинаковой комплектации автоматическими выключателями обусловлено применением корпусов разных габаритов. При использовании ЩРН-16 температура повышается на 29ОС, при использовании ЩРН-24 температура возрастает только на 24ОС.

— В ОЩВ-18 превышение температуры достигает 40ОС. Такое превышение температуры снизит номинал автоматических выключателей с 16 до:

I = 1,13 * 16 * 0,79 * 0,9 = 12,85 A.

Таким образом, чтобы сделать правильный выбор ОЩВ, любому проектировщику достаточно знать геометрические размеры щитка, материал корпуса и способ его установки (навесной или встраиваемый), а также допустимое по ГОСТ превышение температуры. С помощью формулы «KLINKMANN» он может произвести необходимые расчеты и либо выбрать тип автоматического выключателя, его номинальные токи и число модулей на уже существующий щиток, либо, если тип автоматического выключателя и количество на номинальные токи уже задан, выбрать подходящий корпус. Надо учитывать, что несоответствие характеристик ОЩВ и комплектующих его автоматов вызовет недогрузку отходящих линий. Для ОЩВ-18 это снизит максимальную мощность присоединенного оборудования с 72 до 51 кВт, или на 29 процентов.

Нагрев корпуса автоматического выключателя

Коммутационное оборудование

Современные методы диагностики электрооборудования призваны решить задачу предотвращения аварий. Зачастую промышленные предприятия несут серьезные финансовые потери не столько из-за повреждения самого электрооборудования или затрат на восстановление электроснабжения, сколько вследствие простоя основных технологических цепочек.
Контроль температуры главных контактов – шаг вперед в направлении мониторинга текущего состояния автоматических выключателей, основного элемента распределительных устройств напряжением 0,4 кВ, обеспечивающих питание более 90% нагрузки на любом промышленном предприятии.

Читайте так же:
Автоматический выключатель максимальная токовая защита

Алексей Пищур,
к.т.н., генеральный директор

Сергей Ефимовых,
инженер

МЕТОДЫ КОНТРОЛЯ ТЕМПЕРАТУРЫ ГЛАВНЫХ КОНТАКТОВ ВЫКЛЮЧАТЕЛЕЙ

Главные токоведущие проводники электрооборудования, в том числе выключателей, могут перегреваться в любой электроустановке, особенно в местах контактных соединений. Эта ситуация требует особого внимания как с точки зрения пожаробезопасности и сохранности оборудования, так и с точки зрения безопасности обслуживающего персонала.

ПРИЧИНЫ ПЕРЕГРЕВА КОНТАКТОВ

Среди основных причин перегрева можно выделить повышенное переходное сопротивление вследствие плохого контактного соединения. Точки нагрева могут возникнуть из-за неплотного соединения, окисления или коррозии, неисправности компонентов. Такими точками чаще всего являются разъемные и неразъемные контактные соединения, зажимы в токопроводе, главные токоведущие контакты в коммутационных электроаппаратах, точки болтового присоединения главных шин к выключателю.

Влияние перечисленных факторов на нагрев токоведущих частей можно оценить, рассмотрев процесс нагрева токопровода с точки зрения параметра превышения температуры токопровода Δ T :

, (1)

где P – мощность тепловых потерь в токопроводе;
К Т – коэффициент теплоотдачи токопровода;
S 0 – поверхность охлаждения;
с – удельная теплоемкость материала токопровода;
m – масса токопровода;
t – время от начала процесса нагрева (от момента, когда температура токопровода равна температуре среды);
T 0 – превышение температуры токопровода к началу процесса нагрева.

В свою очередь мощность тепловых потерь в токопроводе определяется формулой:

, (2)

где I 2 – ток, протекающий по проводнику;
ρ – удельное сопротивление материала проводника;
l – длина проводника;
q – сечение проводника;
К Д – коэффициент дополнительных потерь, учитывающий явление поверхностного эффекта и эффекта близости.

Из (2) следует, что большое влияние на мощность тепловых потерь оказывает активное сопротивление, которое выражено через соотношение удельного сопротивления, длины и сечения R = ρ · l / q.

Нужно учитывать, что величина параметра q значительно уменьшается в случае неплотного прилегания контактных поверхностей из-за недостаточного усилия затяжки или наличия пленки окисла в месте соединения. Это объясняется тем, что поверхности контактного соединения не идеально ровные и ток проходит через множество точек (рис. 1). Зависимость активного сопротивления такого контактного соединения можно выразить следующим образом:

, (3)

где a – радиус контактной площадки;
n – количество контактных площадок.

Рис. 1. Точечные контакты на поверхности контактного соединения

Количество и площадь контактных площадок зависят от усилия нажатия одной поверхности на другую и от отсутствия на них окислов, мешающих прохождению тока.

Вернувшись к (1) и проанализировав влияние качества контакта токопроводящих поверхностей на его активное сопротивление, мы увидим, что Δ T зависит от выделяемой активной мощности, а мощность в свою очередь – от активного сопротивления контактного соединения и квадрата силы тока, протекающего в этом соединении.

ВОЗДЕЙСТВИЕ НА ИЗОЛЯЦИЮ

Одна из важнейших причин, по которым требуется постоянный контроль температуры токоведущих частей электроаппарата, – старение изоляционных материалов под воздействием повышенной температуры.

Соответствие изоляционного материала классу нагревостойкости (нормируется ГОСТ 10518-88) обеспечивает сохранение его свойств, а значит, защиту персонала от поражения током и безаварийную работу электрооборудования. Превышение допустимой рабочей температуры изоляционного материала неизбежно приводит к ускоренной потере его изоляционных свойств.

Зависимость гарантированного срока сохранения свойств изоляционных материалов от температуры характеризуют графики термического старения (ГОСТ 10518-88, Приложение 3). Например, у изоляции класса В (130 °С) превышение температуры всего на 10 °С сокращает изоляционный ресурс работы на 8000 часов.

Существуют нормы допустимого превышения температуры главных токоведущих цепей. Так, для главных выводов электроаппаратов превышение температуры не может составлять более 80 °С (ГОСТ 50030.2-99, п. 7.2.2.1), а сама температура не должна превышать максимально допустимую рабочую по классу нагревостойкости изоляционных материалов, находящихся в непосредственном контакте или близости с этими токоведущими частями.

Ненадежное контактное соединение может стать причиной серьезной аварии. Например, секция низковольтного распределительного устройства может выгореть полностью из-за плохого контакта болтового соединения токоведущей шины с главным выводом выключателя (рис. 2). В данной ситуации локальный перегрев болтового соединения привел к нагреву всей токоведущей части, разрушению фазной изоляции и в определенный момент к межфазному короткому замыканию (КЗ).

Читайте так же:
Назначение высоковольтных выключателей типы

Рис. 2. Выключатель, поврежденный в результате длительного перегрева

ВОЗДЕЙСТВИЕ НА ГЛАВНЫЕ КОНТАКТЫ

Локальный перегрев контактного соединения в главных цепях приводит не только к старению изоляции, но и к передаче тепла к главным контактам коммутационного аппарата. Контактная система современных аппаратов, сосредоточенная в замкнутом пространстве, более всего подвержена воздействию температуры. В то же время она является основным узлом, которому угрожает опасность выхода из строя вследствие перегрева.

При этом защитные функции коммутационных аппаратов зачастую ограничиваются контролем тока главной цепи и на основе этого параметра осуществляют защиту от перегрева. В некоторых случаях такой защиты недостаточно.

Например, нагрузка на главные токоведущие шины может не превышать 70% номинальной, но при неплотном контактном соединении даже такой ток будет вызывать локальный перегрев. Если данный узел находится вблизи защитного коммутационного аппарата, то тепло будет передаваться по шинам к его главным контактам. Такой перегрев не может быть зафиксирован типовым воздушным автоматическим выключателем со встроенными токовыми датчиками, с помощью которых электронные блоки защиты анализируют параметры тока.

Как правило, локальный перегрев носит длительный характер, что со временем может привести к повреждению аппарата и распространению аварии на соседние ячейки и оборудование.

ВНЕШНИЙ КОНТРОЛЬ

Многие производители решают проблему перегрева оборудования с помощью периодического мониторинга с использованием внешних устройств: инфракрасных датчиков и тепловизоров (рис. 3). Данный контроль является периодическим и требует привлечения дополнительного персонала (в противном случае есть риск получить недостаточно объективные данные).

Рис. 3. Изображение экрана тепловизора

Тепловизоры относятся к оптико-электронным приборам пассивного типа. В них невидимое глазом человека излучение переходит в электрический сигнал, который подвергается усилению, автоматической обработке и преобразованию в видимое изображение теплового поля объекта для его визуальной и количественной оценки.

Инфракрасное излучение концентрируется с помощью системы специальных линз и попадает на фотоприемник, который избирательно чувствителен к определенной длине волны инфракрасного спектра. Попадающее на него излучение приводит к изменению электрических свойств фотоприемника, что регистрируется и усиливается электронной схемой.

Основой всех тепловизоров являются два элемента – матрица фотоприемников и объектив. Современные тепловизоры делятся на два основных вида – с охлаждаемой матрицей (стационарные) и с неохлаждаемой (портативные).

Матрица фотоприемников представляет собой набор чувствительных к излучению тепла элементов. Чтобы обеспечить точность показаний тепловизора, температура датчиков матрицы должна быть постоянной. Для сохранения температуры матрицы применяют громоздкие системы охлаждения, по- этому высокоточные аппараты являются стационарными. Они обладают высокой точностью восприятия и применяются на крупных объектах, где необходимы широкий диапазон и малая погрешность, например, на военных кораблях или в научно-исследовательских центрах.

В портативных тепловизорах используют неохлаждаемую матрицу, что значительно снижает не только вес и габариты прибора, но и его чувствительность.

Положительная сторона применения портативного тепловизора заключается в том, что один прибор можно использовать для обследования нескольких аппаратов, требующих наблюдения.

Одним из недостатков этого метода является невозможность оценить фактическое значение температуры контактного узла, находящегося внутри корпуса автоматического выключателя. Температура на поверхности корпуса контролируемого аппарата может быть ниже фактического значения температуры узла, выделяющего тепло.

Кроме того, при применении портативного тепловизора сложно осуществлять непрерывный контроль, ведь измерение выполняет специалист, который не может круглосуточно контролировать температуру одного аппарата.

Обращает на себя внимание цена портативного тепловизора. Сейчас 45% стоимости всего прибора составляет стоимость матрицы, еще 45% – стоимость объектива. Традиционное стекло абсолютно непрозрачно для инфракрасного излучения с длиной волны 8–12 микрон (именно в этом диапазоне работают тепловизоры с неохлаждаемой матрицей). Поэтому для изготовления тепловизионных объективов применяется дорогостоящий материал – чистый германий. Рыночная цена оптического германия – $1300–1800 за килограмм. Чтобы изготовить одну линзу весом 100 г, требуется 200-граммовая германиевая заготовка.

ВНУТРЕННИЙ КОНТРОЛЬ

Эффективно решить проблему перегрева позволяет неразрушающий постоянный контроль температуры контактных точек главных контактов выключателя. Один из возможных вариантов решения предложили специалисты компании Terasaki. Они разработали и реализовали в воздушных автоматических выключателях серии TemPower2 АСВ систему контроля температуры главных контактов с возможностью сигнализации и автоматического отключения.

Читайте так же:
Выключатель подогрева сидений паджеро спорт

Рекомендуемая температура токоведущих частей выключателя не должна превышать 155 °С (класс нагревостойкости изоляции F). Функция внутреннего контроля температуры главных контактов позволяет измерять температуру в постоянном режиме и с постоянной индикацией на протяжении всего срока службы выключателя.

Встроенные температурные датчики (термопары) измеряют температуру всех главных контактов выключателя сверху и снизу и передают данные измерения напрямую в электронный расцепитель (блок контроля и защит) (рис. 4). При этом не используются внешние дополнительные устройства, а показатели состояния выводятся на ЖК-дисплей расцепителя и в систему диспетчеризации, обеспечивая непрерывный мониторинг температуры контактов аппарата.

Рис. 4. Контроль температуры главных контактов автоматического выключателя с помощью встроенных датчиков

Основные достоинства этого метода: компактность измерительных органов, непрерывность процесса, непосредственный контроль узла, выделяющего тепло. Кроме того, нет необходимости привлекать дополнительный персонал для наблюдения, так как электронный блок защиты может быть настроен так, чтобы при приближении температуры к недопустимому значению срабатывала сигнализация, а затем, если перегрев достигнет недопустимой температуры, выполнялось защитное отключение.

Сигнализация может быть основана на простейшем замыкании контактов микропереключателя или на передаче данных по цифровому каналу связи.

Недостатком этого метода контроля можно считать то, что для каждого выключателя система контроля температуры индивидуальна. В то же время именно непрерывный контроль каждого автоматического выключателя минимизирует риск его повреждения.

Данное решение позволяет сохранить дорогостоящее энергетическое оборудование, обеспечить безопасность обслуживающего персонала и непрерывную работу важнейших технологических процессов.
Зачастую, при приобретении комплектных распределительных устройств, ячеек или отдельных аппаратов для защиты электросети, потребитель ограничивается стандартным набором защит (от КЗ, перегрузки по току и замыкания на землю) и не учитывает важность влияния тепловых процессов, протекающих в электрооборудовании. В связи с этим необходимо отметить, что стоимость мониторинга главных контактов защитного аппарата составляет в среднем всего 2% от стоимости приобретаемых НКУ.

Вложение средств в современные технологии защиты финансово оправдано, так как повышает надежность энергоснабжения, безопасность персонала и оборудования, сокращает простои производства, а также положительно влияет на имидж компании.

ЛИТЕРАТУРА

  1. Таев И.С. Электрические контакты и дугогасительные устройства аппаратов низкого напряжения. М.: Энергия, 1973.
  2. Stewart S. Distribution switchgear / The Institution of Electrical Engineers. London, 2004.
  3. Anderson P. Design and retrofitting of low voltage air circuit breakers. Glasgow, 2010.

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Проект РЗА

Сайт о релейной защите и цифровых технологиях в энергетике

Влияние температуры на характеристики автоматов 0,4 кВ

Влияние температуры на характеристики автоматов 0,4 кВ

Всем привет.

Если говорить про конечные уровни распределения в сетях 0,4 кВ (РЩ — нагрузка), то главная особенность выбора автоматов там — учет рабочей температуры. И это не только температура окружающего воздуха. Важно насколько нагревается сам автомат в ходе эксплуатации, а на этот процесс влияет несколько факторов. О них и поговорим в сегодняшней статье.

Когда температуру автомата 0,4 кВ нужно учитывать?

Есть два типа тепловых расцепителей автоматических выключателя по отношению к влиянию температуры — компенсированные и некомпенсированные.

Первые имеют встроенные системы компенсации температурных колебаний в широких пределах. Это относится к промышленным автоматам (ГОСТ Р 50030.2-2010 / МЭК 60947-2:2006) с термомагнитными и электронными расцепителями. Современные электронные расцепители по-сути представляют собой полноценные блоки релейной защиты и по принципу действия нечувствительны к температуре. Электромагнитные расцепители промышленных автоматов могут иметь температурную компенсацию (например, автоматы защиты двигателей), а могут не иметь. Это нужно уточнять по каталогу на конкретный автомат.

Обратная ситуация с бытовыми автоматами (ГОСТ Р 50345-2010 / МЭК 60898-1:2003). Их параметры срабатывания сильно зависят от температуры, причем как в сторону нагрева, так и в сторону охлаждения.

Таким образом, получаем краткую инструкцию:

  • Бытовой автомат: всегда учитываем температуру при выборе автомата;
  • Выключатель с термомагнитным расцепителем: наличие температурной компенсации уточняем по каталогу. Если ее нет, то учитываем влияние температуры;
  • Выключатель с электронным расцепителем: температура не влияет на уставки расцепителя.
Читайте так же:
Автоматические выключатели узо автомат дифференциальный автомат

Правда есть один момент — при очень высоких температурах работы (50-70 гр. С) расцепитель должен защитить силовую часть выключателя от теплового повреждения. Тогда “жертвой” температуры становятся даже электронные расцепители, а вернее специалист, который считает для них уставки. Ему приходится ограничивать уставку теплового расцепителя (фактически снижать номинальной ток), чтобы автомату “не стало дурно” от таких тепловых режимов.

В чем состоит влияние температуры на автомат?

Чтобы ответить на этот вопрос давайте рассмотрим стандартную характеристику автомата (например, Acti9 iC60N) при различных температурах.
Контрольной температурой для бытовых автоматов является 30 гр.С. — ей соответствует правый график Рис.1.

Влияние температуры на характеристики автоматов 0,4 кВ

Рис.1 Характеристики модульного автомата при различной температуре (из каталога «Acti 9», Schneider Electric)

Обратите внимание на гарантированные токи нерасцепления (Int=1,13*In) и расцепления (It=1,45*In) теплового расцепителя в верхней левой части этого графика. Для контрольного времени в 1 час (3600 с) при кратности 1,13 автомат точно не сработает, а при кратности 1,45 точно сработает и отключит присоединение. Думаю, вам знакомы эти величины.

А теперь посмотрим на левый график Рис. 1. Здесь те же кривые построены для температуры 50 гр.С. Как видно гарантированные токи стали меньше (1,05 и 1,3) и как бы сместились влево.

Такие же отклонения, только вправо, происходят при снижении температуры. Условно это можно показать на Рис. 2.

Влияние температуры на характеристики автоматов 0,4 кВ

Рис.1 Характеристики модульного автомата при различной температуре (из каталога «System pro M compact», ABB)

Таким образом, при увеличении температуры возникает риск ложного отключения автомата от рабочих токов, или даже его термического повреждения, а при снижении — риск отказа защиты от перегрузки кабеля, если она выбрана по контрольной температуре.

Какие факторы влияют на температуру выключателя 0,4 кВ?

Очевидно, что основной фактор — это температура окружающей среды. Причем лучше всего знать не какую-то среднюю рабочую, а диапазон возможных температур на объекте и проверять граничные точки (максимальную и минимальную). Особенно, если устройство находится в неотапливаемом помещении, где возможны большие колебания температуры. Иначе получится, что летом защита от перегрузки работает, а зимой нет)

Влияние температуры на характеристики автоматов 0,4 кВ

Рис. 3. Влияние температуры окружающей среды (из каталога «Acti 9», Schneider Electric)

Второй важный фактор относится к способу установки модульных автоматов (MCB) в шкафу. Если автоматы стоят в ряду, вплотную друг к другу (а это обычно так) то средние автоматы нагреваются больше, чем крайние. Это происходит даже при рабочих токах и нормальной температуре окружающей среды. Поэтому вы должны использовать понижающие коэффициенты при выборе тока срабатывания (читайте номинального тока) таких автоматов.

Влияние температуры на характеристики автоматов 0,4 кВ

Рис. 4. Влияние способа установки автоматов в шкафу (из каталога «System pro M compact», ABB)

Третий фактор относится к воздушным автоматам (ACB) и автоматам в литом корпусе (MCCB). Если вы устанавливаете в корпус таких автоматов дополнительные модули (например, модуль дифф. токов), то стоящий рядом термомагнитный расцепитель может нагреваться сильнее, чем при контрольной температуре. Этот момент нужно уточнять по каталогам производителей.

Влияние температуры на характеристики автоматов 0,4 кВ

Рис. 5. Влияние дополнительного оборудования (из каталога «Compact NSX 100-630 A», Schneider Electric)

Основной вывод, который можно сделать по данной статье — выбор автоматических выключателей 0,4 кВ не такая простая задача, как может показаться на первый взгляд. Нужно учитывать множество факторов и один из самых важных — это рабочая температура автомата.

Перед расчетом хорошенько изучите каталоги и рекомендации от производителей и обязательно запросите недостающие исходные данные. Это позволит предотвратить множество проблем.

Этот и другие вопросы, касающиеся выбора автоматов, будут рассмотрены в новом курсе “Защита сетей 0,4 кВ автоматическими выключателями”, который выйдет в начале сентября.

Советы электрика

“Испытание автоматов АВВ, Hager и EKF.”

Всем здравствуйте! Давно уже записывал эти видеоролики но тем не менее они не потеряли своей актуальности.

Четыре видео: “Испытание автоматов АВВ, Hager и EKF.”

Смотрите в видео как это все выглядит на экране тепловизора, какая разница в нагреве корпусов автоматических выключателей и т.д.

Читайте так же:
Концевой выключатель ts en 60947


Оригинальная установка модульного автомата- а вы такое видели?

Решил поделиться с вами, уважаемый читатель моего сайта- как НЕ НАДО устанавливать модульный автоматический выключатель.

Не буду уточнять где конкретно я увидел, просто однажды в производственной мастерской где установлены стационарные станки- сверлильный, металорежущий, а так же сварочный аппарат с вытяжкой, мои глаза наткнулись на странно расположенный щиток с автоматом.

Честно говоря такое я видел впервые в жизни!

Модульный автомат- срабатывание от небольшой нагрузки

Буквально вчера попросили меня разобраться почему отключается модульный автомат.

По своему принципу действия автоматический выключатель хоть он и модульный, но должен отключаться только по двум причинам:

1. Короткое замыкание- резкий скачок тока большой величины, достигающего кратковременно тысячу и более ампер

2. Перегруз- срабатывание от длительного протекания тока, превышающего номинальный ток на который расчитан автомат.

Конечно это при условии что в автоматическом выключателе есть электромагнитный и тепловой расцепитель.

Однако в моем случае дело было не в КЗ и не в перегрузе, а…

Впрочем обо всем по порядку.

Вы видели Автоматический Выключатель на 10000 вольт? Смотрите!

Электрики работают с низковольтным электрооборудованием в основном с напряжением 220-380 Вольт.

Мы привыкли к автоматическим выключателям разных серий и типов- А, АЕ, ВА, АП, различные модульные автоматы отечественные и импортные на разные токи.

Привыкли к их небольшим габаритам и весу- и в карман засунуть можно и в чемодан с инструментом положить, купил в магазине- сам принес на место работ и установил.

Не знаете как выбрать автомат? Воспользуйтесь программой “Электрик”!

Хорошая новость для тех кто затрудняется с выбором автоматического выключателя, УЗО, не знает какой выбрать провод или кабель.

Есть замечательная программа для этого и называется она соответствующе- “Электрик”!

Кстати полезна она будет и опытным электрикам. например с ее помощью можно даже делать расчет выполненных работ. Подставляете свои расценки по видам работ, нажимаете кнопку- и готово!

Итак, подробнее о том как установить, пользоваться и что из себя представляет

УЗО и дифавтомат- в чем разница?

Это довольно распространенный вопрос- чем отличается УЗО от дифавтомата ?

Напомню как расшифровывается: УЗО-устройство защитного отключения, дифавтомат-дифференциальный автоматический выключатель.

Даже судя по названию можно сказать: УЗО- защищает нас с вами от электрического тока, а вы все знаете и помните что электрический ток не имеет ни цвете, ни вкуса ни запаха и этим он очень коварен.

Защищает- значит устроено таким образом, что не дает электрическому току к нам прикоснуться, отключает электропроводку от напряжения.

Дифавтомат же судя по названию это

Выключатель АП-50 в корпусе IP54- фото

Дмитрий, частый гость моего сайта, как и обещал- выслал мне фотографии автоматического выключателя АП-50 в корпусе со степенью защиты IP54.

Что бы не делать слишком длинной предыдущую статью о АП-50 , я решил разместить фотографии отдельно- для удобства.

Итак, что представляет из себя корпус IP54, что вообще это за обозначение.

Горе-электрик или как НЕ надо устанавливать автоматы

Хочу рассказать случай из практики, тем более случай очень поучительный, так как наблюдаю подобное очень часто.

Началось все со звонка знакомой клиентки, с которой давно знаком, в школе еще вместе учились.

Женщина очень впечатлительная, естественно в электрике совершенно ничего не понимает, звонит и чуть ли не причитая слезно просит приехать и сделать ей свет в квартире.

Из словесного водопада, обрушившегося на меня из телефона понял что случилось что то ужасное и катастрофическое…

Знакомьтесь- АП50! Видео

Еще с детства помню в деревне щелкал этим автоматом у деда, а прошло уже более 30 лет.

Получается целое поколение выросло на этом автомате)))

Чем же так приглянулся автоматический выключатель АП-50, за какие преимущества он получил широкое распространение и продолжает выпускаться и применяться даже сейчас- в век цифровых и нанотехнологий?

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector