Gutdver.ru

Отделка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тестирование изоляции 10 кВ и 5 кВ. Использование ввода GUARD

Тестирование изоляции 10 кВ и 5 кВ. Использование ввода GUARD.

— Для чего нужен ввод GUARD?
— Как он работает?
— Почему Megger делает акцент на точности показаний при работе с GUARD?
— Присутствует ли это у других приборов?
— Тестирование трансформаторов?
— Тестирование кабелей?
— Тестирование изоляторов вводов масляного выключателя на ОРУ?
— Какова реальная выгода от использования GUARD-ввода?


Введение:

Разработка тестера изоляции компанией Evershed & Vignoles — это глава нашей истории в области диагностики электрооборудования. Megger Instruments в Дувре начал производить тестеры изоляции еще до 1897 г.
На сегодняшний день доступны тестеры с выходным напряжением до 10кВ, позволяющие удовлетворить все промышленные и коммерческие потребности. Ввод GUARD в высоковольтных тестерах изоляции (2,5 – 10кВ) с широким диапазоном тестирования является наиболее выгодным решением, позволяя тестировать различные устройства с длинным путем утечки тока по поверхности изолятора.
Примеры таких устройств:
― Кабели большего диаметра
― Фарфоровые изоляторы
― Силовые трансформаторы
― Высоковольтные выключатели
Данное оборудование имеет длинные пути утечки тока по поверхности изолятора за счет своего размера. Это приводит к тому, что сопротивление поверхностной утечки вводит неточности в измерения. Увеличить точность измерения позволяет ввод GUARD.

Для чего нужен ввод GUARD?

Выполняя тест изоляции, мы настолько заняты измерением сопротивления изоляции самого изолятора, что порой забываем о сопротивлении пути утечки тока по его поверхности. Однако сопротивление этого пути является очень важным компонентом всего измерения, а во многих случаях даже самым главным. Например, если изолятор загрязнен, поверхностный ток утечки может быть до десяти раз больше того, что протекает через сам изолятор.
Цепь протекания тока по поверхности изолятора и цепь протекания тока через изолятор образуют параллельное соединение. При помощи ввода GUARD и, так называемого, трех контактного теста, можно исключить ток поверхностной утечки из показания. Данная особенность может быть очень важной, когда ожидается, что измеряемое сопротивление будет велико, например, при тестировании высоковольтных объектов: изоляторов, вводов и кабелей. Данное оборудование обычно имеет большую площадь поверхности, из-за загрязнения которой значительно возрастает ток поверхностной утечки.
Полный ток, текущий во время тестирования изоляции, можно разделить на три компонента:
1. Ток заряда, который вызывает заряд объекта.
2. Ток поглощения — это ток, который проникает в изоляцию за счет поляризации электронов, первоначально высок; со временем спадает (более медленно, чем ток заряда)
3. Ток утечки или ток проводимости, который является слабым током в установившемся режиме. Делится на два компонента:
a. Ток, проходящий через изоляцию
b. Ток, текущий по поверхности * изоляции.
* Ток поверхностной утечки – компонент, который необходимо исключить и не учитывать при измерении сопротивления самого изоляционного материала. При использовании ввода Guard, который есть на большинстве современных тестеров высоковольтной изоляции, ток поверхностной утечки может быть исключен из измерения.

Электрооборудование с меньшим сопротивлением изоляции (<100MΩ), такое как низковольтные кабельные вводы, обычно тестируются без использования GUARD-ввода тестера, тогда как для тестирования оборудования
с сопротивлением изоляции выше 100MΩ, например, высоковольтных изоляторов, очень важно задействовать GUARD-ввод тестера.

Как это работает?

Рассмотрим работу ввода GUARD на наиболее типовом примере — тестирования высоковольтного ввода. Без использования ввода GUARD ток протекает через изолятор, а затем складывается с током, протекающим по его поверхности – тем самым искажая измерение

Теперь рассмотрим пример тестирования с использованием ввода GUARD:

Провод одевается на изолятор и подключается к вводу GUARD тестера. Теперь, ток поверхностной утечки протекает прямо в GUARD-ввод. Прибор, выполняющий тестирование, НЕ БУДЕТ измерять ток утечки, следовательно, он не скажется на значении сопротивлении изоляционного материала.

Для лучшего понимания, что в таком случае происходит внутри тестера, давайте рассмотрим следующую схему. Простейший тестер изоляции имеет три части: источник высокого напряжения постоянного тока, высоковольтный вольтметр и амперметр. Сопротивление изоляции рассчитывается по известному закону Ома: как отношение измеренного напряжения к измеренному току. Ввод GUARD позволяет отклонить ток поверхностной утечки и пустить его по цепи параллельной к амперметру, т.о. не учитывая его при расчете сопротивления.

Однако, не все так просто, как вы видите, в представленной выше схеме были указаны величины сопротивления компонентов. В данном случае любой прибор линейки широкодиапазонных тестеров изоляции Megger: MIT или S1 — измерят значения с не более, чем 2% погрешностью. Данный факт очень важен при сравнении характеристик, указанных в спецификациях к приборам.

Читайте так же:
Выключатель для плафона ваз

Приборы MIT и S1 в диапазоне 5-10кВ при работе с вводом GUARD будут измерять погрешность

2% — погрешность при сопротивлении поверхностной утечки 500кΩ и нагрузке 100 MΩ

Почему Megger делает акцент на точности показаний при работе с GUARD?

Проще говоря, это часть погрешности измерения прибора. Чем выше ток поверхностной утечки, отклоняемый от амперметра, тем меньше ток, который необходимо измерить. Что в свою очередь является проверкой способности прибора измерять оставшийся ток тем самым осуществлять точное измерение сопротивления изоляции.

В спецификации прибора указано, что у пользователя есть возможность учесть эти условия и получить достоверные показания, а, следовательно, правильно определить состояние изоляции. Запомните, что эффективное превентивное обслуживание, основанное на изучении полученных данных, позволяет на ранней стадии выявить неисправность. Время, затраченное на тщательный расчет коэффициентов температурной компенсации, может быть потрачено впустую, если во время тестирования поверхностные утечки не были устранены должным образом.

Присутствует ли это у других приборов?

Безопасна ли эксплуатация?

Сегодня мы все больше и больше осознаем важность безопасности тестеров. Тестеры изоляции не являются исключением. Все тестеры Megger линейки MIT и S1 с напряжением тестирования 5 кВ и 10 кВ соответствуют CATIV 600 В, что не оставляет сомнений в их безопасности.
Но как же это зависит от наличия ввода GUARD? Итак, для того, чтобы тестер удовлетворял требованиям CATIV 600 В, указанным в IEC1010-1: 2001, он должен иметь защиту ВСЕХ вводов по напряжению 8кВ. Основной задачей является сделать так, чтобы прибор имел защиту от импульсного напряжения, но в то же время выполнял свои функции.

IEC1010-1:2001
•Защита всех вводов от скачка напряжения

CATIV 600 В
•Защита при скачке напряжения 8кВ

Задача – обеспечить защиту прибора и работоспособность ввода GUARD

Ток тестирования в режиме короткого замыкания?

Тестеры изоляции Megger MIT и S1 с напряжением 5 кВ и 10 кВ имею ток тестирования в режиме короткого замыкания не менее 3 мА. Это позволяет прибору выполнить быструю зарядку емкостной

нагрузки, например, длинных кабелей. Это так же означает, что прибор имеет достаточно мощности, чтобы выдавать стабильное напряжение при низком сопротивлении.

Данная схема наглядно показывает, как изоляция с сопротивлением 600 MΩ, из-за утечки превратилась в нагрузку для тестера менее, чем 3 MΩ. Высокая

мощность тестера поддерживает стабильное напряжение на изоляции при достаточной силе тока для точного измерения.

Можно ли тестировать трансформаторы?

Межобмоточное сопротивление обмотки высшего и низшего напряжения любой фазы трехобмоточного трансформатора может быть измерено с применением ввода GUARD. В данном случае он устраняет ток, протекающий по поверхности загрязненных изоляторов, что позволяет измерить межвитковое сопротивление с большей точностью.

На данном рисунке показан пример тестирования высоковольтной изоляции без учета эффекта тока утечек между обмоткой высшего и низшего напряжения за счет использования GUARD-ввода.

Тест изоляции обмоток трансформатора с использованием GUARD ввода для устранения токовых утечек между обмоткой и изолятором ввода.

Тест изоляции обмоток трансформатора с использованием GUARD ввода для устранения токовых утечек между обмоткой и изолятором ввода.

ПРИМЕЧАНИЕ: На практике, обе обмотки трехфазного трансформатора намотаны концентрически на изолированный каркас, расположенный на том же участке магнитопровода. Поэтому возможны межвитковые и межобмоточные

замыкания, что приводит к необходимости двойного тестирования.

Тестирование кабелей?

Ввод GUARD так же позволяет снизить эффект поверхностного тока утечки по изоляции кабеля к его концу.

На приведенной выше схеме, ввод GUARD Подключен к обмотке дефектней изоляции, чтобы устранить поверхностные утечки.

На следующем рисунке пара проводников кабеля используются для подключения ввода GUARD к поврежденной изоляции на другом конце кабеля.

Так же ввод GUARD позволяет устранить ток утечки при тестировании других проводников кабеля.

Тестирование изоляторов вводов масляного выключателя на ОРУ?

Приведенные ниже четыре изображения показывают обычные приемы тестирования вводов и смежного оборудования выключателя ОРУ.

Какова реальная выгода от использования GUARD-ввода?

Использование ввода GUARD позволяет не только значительно увеличить точность определения состояния изоляции и осуществлять превентивное

техническое обслуживание, но так же внести еще одно существенное преимущество:

Ввод GUARD – чрезвычайно важный диагностический инструмент!

Для того, чтобы определить наличие и критичность токовых утечек достаточно произвести всего два теста: один с применением ввода GUARD, другой – без. Выставив настройки прибора так, чтобы он показывал ток утечки, достаточно просто вычесть измерения, полученные с применением ввода GUARD, из измерений, полученных без подключения ввода GUARD. Результат разности наглядно отобразит величину поверхностных токовых утечек.

Читайте так же:
Двойная интернет розетка два кабеля

Существует огромное число примеров, когда в результате измерения было получено низкое значение сопротивления изоляции изолятора ввода и др. частей, из-за чего было заменено исправное дорогостоящее оборудование. А через некоторое время, после тестирования с применением ввода GUARD, выяснилось, что изолятор достаточно было хорошо очистить!

— Легко выявить загрязнение поверхности
— Не упускайте возможности выполнить тестирование с использование ввода GUARD и вы точно будете знать, когда пора выполнить очистку изолятора

Ток утечки в электрических сетях, как проверить и найти ток утечки

Ток утечки как физическое явление Вы наверняка слышали выражение «ток утечки» или «ток утечки на землю», но каждый ли сможет объяснить, что это такое? Из-за чего возникает ток утечки, чем он опасен, как его устранить? На эти вопросы мы и постараемся получить ответ.

УЗО

Во-первых, для возникновения «утечки» току необходима замкнутая электрическая цепь, как и любому току проводимости. И нагрузкой здесь может стать практически любой проводящий объект: тело человека, ванна, труба, часть корпуса электроустановки и т. д. А если ток утечки оказывается чрезмерно большим, то может возникнуть опасность для здоровья людей. Вот почему необходимо иметь представление о данном явлении.

Ток утечки в электрических сетях

Схематически на рисунке изображен путь, который ток утечки проложил себе по телу человека. Почему ток пошел по телу в данном примере? Потому что сопротивление между корпусом и токоведущими частями установки по какой-то причине уменьшилось. Если корпус установки с поврежденной изоляцией заземлен, то ток утечки двинется к земле, и в месте контакта корпуса с землей из-за разогрева может случиться возгорание.

Ток утечки на землю

Ток утечки на землю разогреет место крепления провода заземления к корпусу, это и опасно пожаром. Если такое случится например на объекте горнодобывающей промышленности, где высока вероятность обильного выделения горючих взрывоопасных газов или иных легко воспламеняющихся веществ, это может привести к большой трагедии.

Для сетей с глухозаземленной нейтралью вышеописанная проблема, к сожалению, типична. Но есть и другая не менее опасная возможность. Для трехфазных сетей с изолированной нейтралью характерна утечка тока между фазами по земле через изоляторы, корпус, опоры ЛЭП, в случае если повреждена изоляция хотя бы одной из фаз.

Сопротивление параллельно соединенных изоляторов и опор уменьшается пропорционально их количеству, и при поврежденной изоляции шаговое напряжение может превысить безопасное для человека значение. В любом случае, если норма тока утечки превышена, необходимо срочно осуществить поиск источника неисправности и устранить утечку.

Итак, величина тока утечки связана с сопротивлением изоляции проводников, которое может быть как очень большим, так и малым при нарушенной изоляции. Так или иначе, через любую изоляцию всегда протекает хоть и очень мизерный, но реальный ток от токоведущей части установки, находящейся в данный момент под напряжением, к заземлению или к другой фазе.

Безопасное значение тока утечки регламентировано, его можно посмотреть в документации на соответствующее оборудование, но по причине работы устройства в агрессивной внешней среде, изоляция может повредиться, и ток утечки тогда возрастет. Для защиты от неприятных последствий необходимо применять «устройства защиты от токов утечки на землю».

Что такое УЗО

УЗО

Чтобы защитить себя и своих близких от поражения электрическим током и от лишних расходов за утекающую в землю электроэнергию, необходимо использовать устройство защитного отключения или дифференциальный автомат (автоматический выключатель совмещенный с УЗО), — такое устройство мгновенно сработает и произведет аварийное отключение от сети всех потребителей в самом начале утечки.

Дифференциальный автоматический выключатель

Про УЗО у нас на сайте:

Ток утечки на землю в быту

Ток утечки может создать проблемы и в быту, некоторые люди часто используют этот термин, но понимают ли они сам процесс и осознают ли его потенциальную опасность? Ток ведь движется от фазы к земле через проводящие предметы, такие как металлические трубы, корпус стиральной машины, ванна, батарея — по предметам, не предназначенным в обычных условиях для прохождения по ним тока.

Старение изоляции, оплавленная изоляция, частые перегрузки или механически поврежденная изоляция — вот лишь несколько поводов задуматься, а нет ли здесь токов утечки. Любое нарушение изоляции может привести к утечке тока в жилище и к опасности для жильцов. Давайте же разберемся, как обезопасить себя от этих вредных явлений в быту.

Изначально необходимо понимать, что не существует идеальной изоляции. Конечно, исправная изоляция не опасна, но хоть немного нарушенная изоляция уже несет серьезную угрозу. Прикоснувшись к корпусу стиральной машины, к оболочке кабеля, или просто к вилке, где имеет место утечка тока через поврежденную изоляцию, человек может сильно пострадать и даже погибнуть.

Менее опасным, но не менее неприятным симптомом утечки является повышенный расход электроэнергии — ток проходит через счетчик даже при полностью выключенных потребителях квартиры или дома. Уехали в отпуск, вернулись, и увидели, что холодильник намотал непомерно много. А дело то вовсе не в холодильнике, а в нарушенной где-то изоляции.

Имея представление о природе тока утечки, человек сможет легко найти и устранить неисправность, если на то возникло подозрение. Что может стать причиной для такого подозрения? Например, прикосновение к электрическому обогревателю сопровождается ощущением слабого удара током или прикосновение к стиральной машине во время мытья рук над ванной приводит к похожим ощущениям. Это однозначно указывает на то, что где-то в приборе имеет место поврежденная изоляция. Нужно искать «течь».

Проще всего в домашних условиях использовать мультиметр или индикаторную отвертку. Либо измерить сопротивление мегомметром, если такой вдруг оказался под рукой. Конечно, мегомметр есть далеко не у каждого обывателя дома, поэтому рассмотрим самые простые возможности.

Проверка на утечку при помощи индикаторной отвертки

Оборудование с проводящей оболочкой, такое как холодильник, стиральная машина, водонагреватель — можно очень просто проверить на наличие тока утечки индикаторной отверткой. Осторожно прикоснитесь к корпусу включенного прибора индикаторной отверткой так, словно проверяете наличие фазы в розетке. Если индикатор хоть немного засветится, то это явный признак утечки, — нужно искать повреждение изоляции и, что не менее важно, проверить соединение заземляющего проводника из розетки с корпусом прибора, если такое заземление предусмотрено, и вообще проверить заземление.

Прозвонка омметром

Еще один способ проверки целостности изоляции внутри бытового прибора — при помощи мультиметра. Выдерните проверяемый бытовой прибор из розетки, включите мультиметр в режим омметра, выставьте предел измерения на отметку 20 МОм. Измерьте сопротивление между корпусом прибора и вилкой (между корпусом и каждым из штырей вилки).

Сопротивление должно оказаться более 20 МОм — за пределами шкалы. Если у вас есть мегомметр, то с его помощью можно аналогичным образом провести измерение состояния изоляции на нечувствительном к высокому напряжению оборудовании (мегомметр имеет на своих щупах высокое напряжение).

Старый способ с радиоприемником

Простой бытовой способ поиска утечек в скрытой в стене проводке. Его раньше всегда применяли прежде чем начинать делать ремонт, чтобы рабочих не ударило током во время штукатурки. Брали портативный радиоприемник на средние или длинные волны, выставляли его частоту приема на молчащую станцию, и при всех выключенных потребителях проходились с приемником вдоль пути прокладки проводки. Если динамик начинал издавать шум — в этом месте утечка.

Испытание и проверка силовых кабелей — Измерение тока сквозной проводимости

Измерение тока сквозной проводимости (утечки — установившегося значения зарядного тока при неизменной величине испытательного напряжения) является одним из видов контроля состояния и качества изоляции кабеля.
Измерение тока проводимости обычно совмещается с испытанием повышенным напряжением и является дополнительным критерием состояния изоляции.
Измеряемая миллиамперметром величина токов утечки зависит:
от длины испытываемой линии, так как проводимость изоляции прямо пропорциональна длине линии;
от температуры кабеля в момент производства испытания (кабель, испытанный немедленно после снятия нагрузки и отключения, имеет большие токи, чем этот же кабель, испытанный в холодном состоянии). Изменение проводимости изоляции трехжильного кабеля в зависимости от температуры показано на рис. 23;
от конструкции и состояния концевых муфт вследствие возникновения значительных поверхностных токов утечки при загрязнении поверхности воронки; наличия трещин на поверхности заливочной массы, ее увлажнения, загрязнения изоляции жил, втулок и изоляторов;
от влажности воздуха, токов утечки и токов короны, возникающих в схеме испытания, соединительных проводниках, кабельных наконечниках и других элементах, входящих в схему испытания.
Несмотря на то что измерение тока проводимости на выпрямленном напряжении является одним из самых распространенных при профилактических испытаниях изоляции, методика этого измерения зачастую страдает рядом дефектов, вследствие чего величина токов проводимости определяется со значительными погрешностями, которые могут быть вызваны неполнотой выпрямления постоянного тока (пульсацией напряжения), а также паразитными токами.
а) Устранение погрешностей, связанных с неполнотой выпрямления

Рис. 23. Ориентировочная зависимость поправочного коэффициента К от температуры кабеля.
Устранение погрешности в измерении тока проводимости, вызываемой несовершенством выпрямления, может быть выполнено:
увеличением емкости, включенной в испытательную схему, до такой величины, когда погрешность измерения не будет превышать допустимую (включение балластной емкости);
введением поправочного коэффициента, учитывающего ошибку измерения.
Применение поправочных коэффициентов на первый взгляд является наиболее простым, так как не требует применения балластных емкостей, исключающих пульсацию.
Однако сами поправочные коэффициенты, особенно при применении однополупериодной схемы выпрямления, могут быть вычислены с большой погрешностью.
Поправочный коэффициент определяется как отношение максимального значения испытательного напряжения к среднему значению этого напряжения.
На поправочный коэффициент следует умножать измеренные токи утечки кабеля для приведения их к истинному значению. Допускаемая относительная погрешность измерения тока утечки при испытании выпрямленным напряжением составляет 5%-
Если устранить пульсацию напряжения, то тем самым будет исключена и пульсация измеряемого тока утечки.
Поэтому для устранения погрешности измерения тока утечки достаточно снизить до допустимой величины пульсацию напряжения на кабеле, включив необходимую балластную емкость (см. рис. 21).
Необходимо иметь в виду, что величина сопротивления R„э (см. рис. 23) определяется не только утечками самого кабеля, но и всеми другими утечками измерительной схемы, в том числе утечками балластной емкости. Для более точного определения величины балластной емкости рекомендуется производить специальное измерение утечки схемы и конденсаторов, предназначенных к использованию в качестве балластных емкостей, либо выбирать последние с большим запасом.
б) Устранение погрешностей, вызываемых паразитными токами
Включение измерительного прибора в схему испытательной установки возможно (см. рис. 24) в точках 1 — 1 («обратная» схема), 2—2 — («перевернутая» схема) и 3—3 («нормальная» схема).

Рис. 24. Схемы включения приборов при измерении тока утечки.

Таблица 2
Методы исключения паразитных токов при измерении токов проводимости

Может быть частично отведен, если изолировать корпус трансформатора от земли и соединить его с низковольтным выводом помимо прибора

Ток I’2 не может быть исключен. Токи короны I"г возникают при напряжении более 20 кВ и могут быть снижены удалением частей, находящихся под высоким напряжением, от заземленных частей. Полностью ток не исключается

Ток замыкается помимо прибора

Ток I’2 замыкается помимо прибора. Ток 1"2 может быть исключен экранированием (рис. 25)

Ток замыкается помимо прибора

Токи I’2 и I"2 замыкаются помимо прибора. Рекомендуется экранировать провод от объекта до приборов

При измерениях тока утечки возможны искажения отсчета, обусловленные паразитными токами, возникающими под действием напряжения измерительной установки и протекающими через ее измерительный элемент, минуя объект измерения (в данном случае испытуемый кабель).
Эти токи, накладываясь на измеряемый ток кабеля, могут внести значительные искажения в результаты измерения.
Основные паразитные токи следующие:
ток, проходящий между обмоткой испытательного трансформатора и его корпусом (ток Л); ток утечки изоляции провода, подводящего испытательное напряжение к кабелю (/’г), и ток короны, возникающий на этом проводе (/"2).
Методы исключения паразитных токов в зависимости от места включения измерительного прибора, приводятся в табл. 2.
Схема включения прибора в точке 1—1 является наиболее несовершенной (как видно из таблицы).
Наиболее правильные измерения могут быть получены при включении прибора в точках 2—2 и 3—3, но в этих случаях необходимо применить экранирование провода от прибора до объекта испытания (кабеля), что создает токам короны путь помимо прибора (рис. 25).

Испытание кабельных линий повышенным напряжением

Испытание кабельных линий повышенным напряжениемВ целях снижения повреждаемости кабельных линий под рабочим напряжением правила технической эксплуатации рекомендуют проводить периодические испытания указанных линий повышенным напряжением.

Для чего нужны испытания кабельных линий повышенным напряжением? Считается, что в процессе испытания ослабленное место изоляции кабеля пробивается и, следовательно, снижается вероятность повреждения кабеля под рабочим напряжением.

Испытания кабельных линий проводятся повышенным напряжением постоянного тока. При напряжении постоянного тока возможно применение негромоздких испытательных установок большой мощности. Частичные разряды в здоровой изоляции при испытаниях развиваются слабо, незначительны потери активной мощности и тепловыделение. При этом, испытательное напряжение может быть достаточно большим.

Кабели 3 — 10 кВ с резиновой изоляцией испытывают напряжением 2 U н, кабели с бумажной изоляцией и вязкой пропиткой с рабочим напряжением до 10 кВ испытывают напряжением (5-6) U н, а с рабочим напряжением 20 — 35 кВ — напряжением (4 — 5) U н. Продолжительность испытания каждой фазы составляет 5 мин.

Силовой электрический кабель

У кабелей напряжением до 1 кВ посте выполнения мелких ремонтов лишь измеряют сопротивление их изоляции мегомметром на 2500 В в течение 1 мин. Сопротивление изоляции должно быть не ниже 0,5 МОм.

До и после испытаний кабелей повышенным выпрямленным напряжением измеряют сопротивление их изоляции мегомметром на 2500 В.

Для повышения производительности труда при испытаниях, сокращения времени отключения потребителей, а также снижения повреждаемости концевых муфт при отсоединении и присоединении концов кабельных линий кабельные линии, подключенные к одной секции шин ЦП, могут испытываться одновременно без отсоединения их от системы шин. Кроме того, плановые испытания кабельных линий стремятся совместить с ремонтом оборудования распределительных устройств на приемном и питающем концах этих линий.

Кабельные линии, проложенные в земле, целесообразнее всего испытывать повышенным напряжением в летнее время, так как в случае их пробоя при испытаниях упрощается выполнение ремонтных работ.

Изоляцию кабельных линий испытывают с помощью специальных высоковольтных выпрямительных установок , которые могут быть передвижными, переносными или стационарными.

Все установки содержат (см. рис. 1): испытательный трансформатор 2, высоковольтный выпрямитель 3, пульт управления. Высокое напряжение получаемся от трансформатора 2 с заземленной через миллиамперметр высоковольтной обмоткой.

Выпрямление осуществляется выпрямителем по однополупериодной схеме. Первичная обмотка высоковольтного трансформатора питается от регулировочного автотрансформатора 1. Высокое напряжение измеряется киловольтметром kV, включенным в первичную цепь трансформатора 2

Ток утечки контролируется с помощью микроамперметра, один полюс которого заземлен, а второй соединен с началом вторичной обмотки высоковольтного трансформатора 2. В цепь высоковольтного трансформатора и выпрямителя включен последовательно резистор R, ограничивающий ток в случае пробоя кабеля. Для питания катодной цепи кенотрона используется трансформатор накала 5.

Схема высоковольтной установки для испытания кабеля

Рис. 1. Схема высоковольтной установки для испытания кабеля

При испытании трехжильных кабелей (4) с поясной изоляцией напряжение от испытательной установки подают поочередно к каждой жиле, две другие жилы и оболочку заземляют.

При испытании всех кабелей плавно повышают напряжение до нормируемого значения и выдерживают кабели под этом напряжением в течение 5 мин с момента установления нормированного значения напряжения.

Как определить состояние кабеля при испытании повышенным напряжением

Состояние кабеля определяют по току утечки. У кабелей с бумажной изоляцией на напряжение до 10 кВ ток утечки составляет около 300 мкА. При удовлетворительном состоянии кабеля в случае подъема напряжения да счет зарядки его емкости ток утечки резко возрастает, затем быстро снижается до 10 — 20% максимального.

При испытаниях не должны наблюдаться скользящие разряды, толчки токов утечки, нарастание установившегося значения тока утечки. Сопротивление изоляции кабеля, измеренное мегомметром до и после испытаний должно быть одинаковым.

Электрические кабели на промышленном предприятии

В случае наличия дефектов в изоляции кабеля ее пробой происходит в основном в течение первой минуты после установления испытательного напряжения. При хорошем состоянии изоляции кабеля асимметрия токов утечки по фазам трехжильного кабеля не превышает их двукратного значения.

Порядок действий в случае пробоя кабеля при проведении испытаний

При пробое кабельной линии во время испытаний или после ее аварийного отключения необходимо определить место и характер повреждения кабеля.

При однофазном повреждении (пробое изоляции кабеля с жилы на металлическую оболочку) кабель может быть отремонтирован без разрезания жил. Для этого снимают броню, оболочку, поясную изоляцию и изоляцию поврежденной жилы. После этого восстанавливают заново изоляцию в поврежденном месте.

Обеспечение герметичности соединения осуществляется с помощью кабельной муфты. При повреждении жил этот участок кабеля вырезают, вставляют новый отрезок и монтируют две муфты. При повреждении соединительной муфты се вырезают и повторно соединяют кабель новыми муфтами. В случае небольшого дефекта в муфте она может быть заменена другой (удлиненной) без дополнительной вставки кабеля.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector