Gutdver.ru

Отделка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сколько энергии потребляют умные розетки

Сколько энергии потребляют умные розетки?

Я вижу много Wi-Fi розеток или вилок и т.д., но никто никогда не упоминает, сколько энергии они потребляют сами. Как правило, они постоянно подключены к Wi-Fi, ожидая команд. Разве это не берет власть? Я знаю, что это, вероятно (надеюсь) меньше, чем устройство, резерв которого мы пытаемся сократить, но кто-нибудь проверял использование энергии интеллектуальными вилками или коммутаторами?

Я знаю, что есть много разных типов, но есть ли разница в использовании между дешевыми подделками и интеллектуальными коммутаторами крупных брендов?

А как насчет тех, которые используют обычные пульты дистанционного управления, которые можно использовать без Wi-Fi? Обычно радиосигналы, также постоянно потребляющие некоторое количество энергии, верно?

Розетки Wi-Fi потребляют около 1,5-2 Вт энергии, это WeMo, как упоминалось в ответе Джима, а также несколько других, которые я пробовал, например TP HS110.

Розетки ZigBee, такие как Samsung SmartThings, должны потреблять меньше энергии из-за использования протокола ZigBee. Согласно их форумам поддержки, это около 0,3 Вт, когда реле выключено, и 0,6 Вт, когда оно включено. Сообщество SmartThings .

Мои собственные старые розетки с инфракрасным управлением потребляют даже больше энергии, чем ZigBee, им требуется около 0,7 Вт. Во всяком случае, это все же меньше, чем розетки Wi-Fi.

Тем не менее, вам может понадобиться концентратор для устройств ZigBee, который потребляет всю сэкономленную энергию. Устройства Wi-Fi часто могут отказаться от таких концентраторов и могут напрямую контролироваться через приложение или Alexa и т.п. Таким образом, вы должны рассмотреть ваш вариант использования. Если вы просто хотите дистанционно управлять несколькими устройствами, вы можете использовать ZigBee / IR и назначенный пульт, если вы хотите больше, эти розетки Wi-Fi могут потреблять меньше энергии.

Чтобы лучше понять энергопотребление умных штекеров, стоит заглянуть в них. Чтобы сделать это, давайте посмотрим на некоторые умные проекты плагинов.

введите описание изображения здесь

введите описание изображения здесь

Как вы можете видеть, части этих двух разных конструкций совершенно одинаковы.

  • Существует источник переменного / постоянного тока, который обеспечивает постоянное напряжение для подсхем.
  • Есть «мозг», микроконтроллер с поддержкой Wi-Fi. ATSAMW25 и CC3200.
  • Есть несколько специальных аппаратных средств для измерения мощности.
  • Реле, позволяющее переключать линии питания.
  • Некоторые индикаторы обратной связи и кнопки для локального подключения штекера.

По сути, потребляемая мощность самой вилки — это общая потребляемая мощность этих частей. Основными потребителями являются микроконтроллеры с поддержкой Wi-Fi, реле, и я считаю, что светодиоды потребляют больше, чем расходные детали. Вдобавок ко всему этому идет эффективность источника питания переменного / постоянного тока, на этих элементах будет определенная потеря мощности.

Микроконтроллер с поддержкой Wi-Fi

Большую часть времени процессор приложения будет находиться в режиме пониженного энергопотребления с потреблением тока между мкА и мА. Wi-Fi добавит еще немного потребления, пару мА в нерабочем состоянии.

CC3200 , например , потребляет 12 м , если приложение MCU находится в спящем режиме (не глубокий сон) и сетевой процессор находится в режиме ожидания соединенного состояния. В случае RX потребление возрастает до 56 мА, а в случае TX максимум до 270 мА. (Подробные таблицы на стр. 32.)

Конечно, эти параметры могут отличаться для разных устройств от разных производителей, но примерно одинаковый масштаб.

Реле

В зависимости от типа реле могут быть значительные потери. Существует потеря из-за катушки, называемой силой катушки. Это может быть даже сотни мВт ( 10А, 240 В переменного тока реле 500 — 700 мВт, самая дешевая на Farnell ).

И есть потери из-за сопротивления контакта (100 мОм для предыдущего реле, а при нагрузке 10 А оно рассеивает некоторую мощность). Более дорогие имеют лучшие параметры, например , с сопротивлением 50 мОм .

Я уверен, что дешевые подделки имеют более дешевые реле, поэтому, возможно, потребляют несколько больше.

светодиоды

Стоит отметить пару мА, но не более того.

AC / DC источник питания

Это добавит процент в верхней части общего потребления. Более дешевые преобразователи, вероятно, имеют более низкую эффективность, поэтому дешевая вилка в этом случае будет потреблять больше.

Переключатель обратного хода 700 В UCC28910 от TI имеет типичный КПД 75% в соответствии с таблицей данных (стр. 30.). Могут быть и худшие, и немногие лучше. Снова это дает грубый масштаб.

Все это может меняться, конечно, но в основном это факторы, которые определяют потребление самого устройства. Вы можете рассчитать потребление в худшем случае для дизайна TI, чтобы получить значение W. И, конечно, вы можете проверить параметры определенных продуктов.

Репутация WeMo заявила о 1,5 Вт для своего настенного выключателя на форуме WeMo. Я полагаю, что большинство этих настенных / розеточных переключателей потребляют 1-2 Вт в режиме ожидания.

Это видео 2015 года демонстрирует интеллектуальный диммер A -otec Z-Wave, измеренный в:

Я предполагаю, что эти коммутаторы имеют такое же энергопотребление, как розетка / розетка, учитывая их схожую функциональность. Розетки могут быть немного ниже, если нет необходимости в регулировке яркости.

Человек, пишущий этот пост с 2016 года, претендует на должность «лидера в разработке технологии импульсного источника питания (SMPS) более 20 лет» и писал:

Сегодня мы можем создать источник питания для зарядного устройства / адаптера с потреблением в режиме ожидания <25 мВт и средней эффективностью> 82% во всем диапазоне нагрузок. К концу года мы ожидаем, что сможем добиться еще большего. Мы можем создать источник питания для ТВ мощностью 100 Вт с максимальной эффективностью около 90% (вентилятор не требуется), коэффициентом мощности, близким к единице, и потреблением в режиме ожидания около 450 мВт (необходим для поддержания ИК-датчика и связанных компонентов таким образом, чтобы вы могли включить его. ). Нередко ожидать появления блоков питания со средней эффективностью> 90% и почти нулевым режимом ожидания. Само понятие, что вы должны отключать что-то, чтобы экономить энергию, немного устарело.

Ваш комментарий о Wi-Fi немного неточен. Хотя большинство этих технологий обмениваются данными по беспроводной сети, большинство из них не используют 802.11a / b / g / n. Это делает использование большой утечки энергии. Я направляю вас к этому отчету Международного энергетического агентства за 2016 год . Я включил рисунок 20 из отчета (стр. 41) ниже, который дает широкое сравнение технологий.

Читайте так же:
Выключатель стопов рено логан

Сравнение дальности, энергопотребления и скорости передачи данных нескольких технологий

Как видите, есть беспроводные технологии, которые потребляют гораздо меньше энергии, чем WiFi. На самом деле, в отношении приводов (например, выключатели света) в отчете отмечается (стр. 45):

Например, в случае EnOcean механическая энергия нажатия кнопки беспроводного выключателя света используется для подачи питания на шлюз.

Очевидно, что нет никакого механического действия, чтобы захватить энергию для розетки, но это действительно указывает, насколько маломощная связь, если она может быть запитана легким нажатием пальца.

Выключатель с индикатором потребляет электроэнергию или нет

1. Самый существенный и самый простой способ экономии электроэнергии в быту заключается в равномерном потреблении электроэнергии всем обществом в течение суток, поэтому без особой необходимости не включайте дополнительные электроприборы в сеть в часы пик электрических нагрузок: утром с 8 до 10 ч и вечером с 20 до 22 ч. Задача непростая, но все-таки приучите себя к этому. Имейте в виду, что любая рачительная хозяйка в цивилизованной стране никогда не включит в часы пик стиральную машину или электронагреватель.

2. Знайте, что экономное потребление электроэнергии определяется не столько качеством бытовой электротехники, сколько качеством ухода за ней.

3. Известно, какие тревожные чувства испытывают люди, когда на работе вспоминают, что второпях забыли (часто им это только показалось) дома выключить свет и электроприборы. Навсегда избавиться от таких неприятностей, а также предотвратить ненужную трату электроэнергии и обеспечить пожарную безопасность в доме можно следующим образом: в магистральной линии электропроводки сразу же после электросчетчика в фазном проводе сделать разрыв цепи, подключив туда однополюсный выключатель. Установите выключатель недалеко от выходной двери (конечно, электророзетку домашнего холодильника проведите отдельной линией и подключите к электросети до смонтированного выключателя). Теперь, уходя из дому, вы с помощью выключателя снимаете электрическое напряжение со всех электропроводок в доме (кроме холодильника). Запомните установка выключателя требует соответствующих знаний и должна выполняться в соответствии с действующими Правилами устройств электроустановок и правилами техники безопасности.

4. Заставьте себя, по крайней мере, 1 раз в год поджимать винты и гайки у всех доступных контактов в электросети и в электроприборах. Этим вы обеспечите не только долговременную, надежную и экономичную работу электрооборудования, но и его сохранность, а также пожарную безопасность в доме.

5. При наличии в доме скрытой электропроводки дюбеля и гвозди забивают в стены, только зная схему прокладки электропроводов. В противном случае вы рискуете повредить электропроводку или получить электротравму.

6. Каждая семья в доме должна иметь вместе с прочими электроинструментами еще и индикатор напряжения (токоискатель) на случай проведения профилактических или ремонтных работ на электрооборудовании.

7. Систематически следите, чтобы днища кастрюль плотно прилегали к конфоркам электроплит, причем для этой цели постарайтесь найти и применять специальные мягкие кольцевые подушечки, с помощью которых заполняют зазор между днищами и конфорками и тем самым сводят к минимуму потери энергии в данном узле.

8. Учтите, что диаметры днищ кастрюль должны быть либо равны диаметрам конфорок электроплит, на которые их ставят, либо больше.

9. Помните, что на конфорке электроплиты экономичнее и быстрее нагревать сразу большую дозу воды, чем такое же количество воды, но меньшими дозами.

10. Немедленно меняйте конфорку электроплиты, если ее поверхность вспучилась, поскольку такая конфорка будет работать крайне неэкономично. Имейте в виду, что скупой платит дважды (в данном случае "скупой" и "экономный" явно неадекватные понятия).

11. При приготовлении пищи не допускайте потерь тепла с уходящим паром, у каждой кастрюли должна быть своя плотно прилегающая крышка.

12. Учитывая тепловую энергию конфорок электроплит, включайте их несколько раньше, чем ставите кастрюли, а выключайте еще до окончания приготовления блюда.

13. Не допускайте бурного кипения воды на включенной на полную мощность конфорке, ведь для кипения на разогретой плите достаточно и гораздо меньшей мощности.

14. Используйте экономичный "башенный способ" приготовления пищи на пару, при котором кастрюли ставят друг на друга, при этом верхняя кастрюля греется паром, поднимающимся из нижней кастрюли.

15. Стремитесь иметь на кухне посуду с утолщенным дном, которая специально предназначена для приготовления пищи на конфорках электроплит.

16. При эксплуатации электродуховки используйте весь ее рабочий объем. Согласитесь, печь пару пирожков в объемной духовке и неэффективно, и неэкономично.

17. Обязательно приобретите скороварки, так как они позволяют сэкономить и время, и электроэнергию.

18. Знайте, что трубчатые конфорки электроплит с бесступенчатым регулированием мощности нагрева гораздо экономичнее и долговечнее чугунных конфорок со ступенчатым регулированием.

19. Не используйте конфорки электроплит для обогрева помещений — толку от этого мало, а риск вывести из строя конфорку, работающую на холостом ходу, велик.

20. При стремлении организовать у себя дома сверхбыстрое и качественное приготовление пищи (разогрев по всей толще продукта) приобретайте микроволновые печи или печи СВЧ.

21. Для варки картофеля и овощей используйте минимальное количество воды в кастрюлях.

22. Существенный резерв экономии электроэнергии при приготовлении пищи — применение специализированных электронагревательных приборов (сковородок, кастрюль, грилей, кофеварок и др.), в которых блюда получаются более высокого качества, а электроэнергии тратится гораздо меньше.

23. Промышленность выпускает электрочайники разных конструкций, поэтому постарайтесь купить электрочайник с тепловым расцепителем и со свистком, сигнализирующим о кипении воды.

24. Для нагрева небольшого количества воды пользуйтесь электрочайником, при этом кипятите в нем воды столько, сколько ее нужно в данный момент, так как горячая вода в электрочайнике быстро остывает.

25. Электрочайник, пожалуй, один из самых часто ремонтируемых электроприборов в доме, поэтому с целью повышения его кпд, улучшения сохранности тепло-электронагревателя (ТЭНа) и обеспечения пожарной безопасности попробуйте самостоятельно оборудовать электрочайник несложным устройством, обеспечивающим надежное отключение электрочайника от сети при закипании в нем воды, то есть долговременную работу без ремонта.

Читайте так же:
Автоматический выключатель защиты двигателя pkzm01

26. Накипь внутри электрочайников существенно снижает их экономичность, поэтому не забывайте своевременно удалять накипь (например, с помощью средства "Антинакипин").

27. Применяйте термосы для поддержания воды и пищи в нагретом состоянии в течение достаточно длительного времени.

28. Промышленность выпускает самые разнообразные светильники, и, если вам представляется возможность выбирать, отдайте свое предпочтение светильникам с люминесцентными лампами или светильникам с электролампами накаливания, оснащенным индивидуальными полупроводниковыми светорегуляторами.

29. Максимальное использование естественного освещения — один из путей уменьшения расхода электроэнергии на искусственное освещение. Имейте это в виду и следите за чистотой оконных стекол в квартире.

30. Умело сочетайте в доме все три вида искусственного освещения: общее, местное и комбинированное. Общее освещение предназначено для равномерного освещения всего помещения с помощью потолочных светильников. Местное — для освещения некоторой отдельной зоны в помещении и осуществляется потолочными светильниками типа "бра", торшерами и настольными лампами. Комбинированное освещение — это одновременное использование общего и местного освещения.

31. Старайтесь приобретать и использовать дома электролампочки накаливания, у которых на цоколе или на колбе имеется маркировка 230. 240 В, поскольку такие электролампочки служат дольше тех, у которых на маркировке указано 220 В (правда, первые светят чуть хуже).

32. Знайте, что замена двух расположенных рядом электролампочек на одну электролампочку той же общей мощности дает и увеличение освещенности, и экономию электроэнергии.

33. Экономия электроэнергии при искусственном освещении не должна идти в ущерб освещенности рабочего места, поэтому применяйте местное освещение с максимальным приближением источника света к рабочему пространству.

34. Имейте в виду, что световая отдача у люминесцентных ламп в 4. 5 раз выше, чем у электролампочек накаливания при одной и той же потребляемой мощности, поэтому старайтесь применять люминесцентные лампы без ограничений во всех помещениях (кроме, пожалуй, ваннодушевой комнаты). Применение люминесцентных светильников с бесшумными пусковыми устройствами в доме — реальная экономия электроэнергии. Бытующее представление о том, что современные люминесцентные лампы вредны для здоровья, лишено оснований, скорее наоборот, они создают больший комфорт при умелом оформлении помещений. (Справедливости ради необходимо сказать, что люминесцентные лампы первых выпусков имели слишком узкий спектр светового излучения.)

35. Приучите себя регулярно, примерно 1 раз в месяц, вытирать пыль со светильников, что обеспечит и чистоту, и улучшение освещенности в доме.

36. Не применяйте матерчатых абажуров, поскольку они собирают пыль и опасны в пожарном отношении.

37. Для управления освещенностью в помещениях используйте полупроводниковые светорегуляторы, их применение улучшает комфорт и одновременно снижает расход электроэнергии.

38. Промышленность выпускает бытовые холодильники двух типов — компрессионные и абсорбционные. Наибольшее распространение получили экономичные компрессионные одно- и многокамерные холодильники, работающие в автоматическом режиме (кстати, они имеют примерно одинаковые энергетические показатели).

39. Устанавливайте холодильник подальше от отопительных и нагревательных устройств в доме.

40. Всегда оставляйте и поддерживайте зазор в 5. 10 см между испарителем холодильника и стеной помещения.

41. Не допускайте нагрев корпуса холодильника прямыми солнечными лучами.

42. Устанавливайте холодильник с небольшим наклоном назад (до 5°) и обязательно отрегулируйте положение компрессионного агрегата так, чтобы он издавал при работе как можно меньше шума.

43. Не ставьте горячую пищу в холодильник.

44. Раскладывайте продукты в холодильнике без нагромождения, чтобы обеспечить необходимую циркуляцию воздуха в камере.

45. Не открывайте без причины дверь холодильника и не держите ее слишком долго открытой.

46. При хранении продуктов старайтесь устанавливать терморегулятор в минимальном или среднем положении.

47. Не забывайте примерно 1 раз в месяц размораживать холодильник (при этом, упаси Бог, не тычьте металлическими предметами в морозильной камере, отковыривая лед), а также чистить и мыть его теплой водой.

48. И вообще знайте, что систематическое выполнение элементарных, всем известных правил по эксплуатации холодильника позволит не только сэкономить электроэнергию, но и продлить безотказную работу такому жизненно важному устройству в доме.

49. Приобретайте малогабаритные стиральные машины, так как они потребляют меньше электроэнергии и занимают меньше места в доме. Не используйте стиральную машину для стирки 2. 3 носовых платков, лучше накопите достаточное количество белья для ее полной загрузки.

50. Если есть возможность, приобретите электроутюг с терморегулятором и выключателем на ручке — это, пожалуй, самые экономичные утюги, поскольку работают тогда, когда ими гладят (при желании такое отключающее устройство легко сделать самому).

51. При эксплуатации электроутюга старайтесь не перекручивать электрический шнур и регулярно проверяйте его целостность.

52. Вначале прогладьте вещи, которые необходимо обрабатывать при низких температурах, а затем повышайте нагрев утюга по мере необходимости.

53. Не забывайте чистить рабочую поверхность электроутюга, так как это облегчает глажение и экономит электроэнергию.

54. Помните, пылесос экономично и надежно работает только при чистых фильтрах, поэтому каждый раз после уборки помещений не только вытряхивайте пылесборник, но и тщательно чистите его щеткой.

55. Учтите, что радиоприемники со слишком мощными громкоговорителями, а также телевизоры с чрезмерно большими экранами в малогабаритных квартирах выглядят, не только нелепо, но и являются пожирателями электроэнергии да еще причиняют вред здоровью.

56. Не располагайте радиоприемники и телевизоры вблизи отопительных и нагревательных устройств, следите за тем, чтобы вокруг них всегда было пространство для циркуляции воздуха.

57. Применяйте таймерные устройства для автоматического включения и выключения радиоприемников (телевизоров) по заданной вами программе, что позволит и экономить электроэнергию, и обеспечить более длительную работу аппаратуры.

58. Помните, что бытовой стабилизатор напряжения — дополнительный потребитель электроэнергии и что его применение оправдано только в том случае, когда в электросети наблюдаются слишком резкие колебания напряжения. Там же, где таких колебаний нет, лучше обойтись без стабилизатора, но при этом постарайтесь не пользоваться телевизором ночью, когда в сети повышенное напряжение.

59. Знайте, конструкции телевизоров последних моделей имеют встроенные в них стабилизаторы напряжения.

60. Учтите, что для прослушивания местных информационных программ достаточно иметь аппарат, работающий от радиотрансляционной сети.

Читайте так же:
Как посчитать ток автоматического выключателя

61. Слушая радиоприемник, старайтесь пользоваться головными телефонами, что не только обеспечит тишину в доме, но и сэкономит электроэнергию.

62. Приобретайте для дома электроинструменты и механизмы с электрическим приводом, электрифицированные швейные машины, электросверлилки, малогабаритные электросварочные аппараты, электропаяльники и др. Конечно, все они являются дополнительными потребителями электроэнергии, но косвенно способствуют сбережению других видов энергий и в целом стимулируют деловую активность людей.

63. Приобретая предметы элетробытовой техники "второстепенного значения" (погружные кипятильники, грелки, камины, тепловентиляторы, конвекторы и т. д.), помните, что все они являются дополнительными потребителями электроэнергии, и старайтесь пользоваться ими умеренно.

64. Не применяйте электроотопительные агрегаты в доме, если в том нет острой необходимости. Лучше проведите целенаправленную работу по утеплению окон и дверей.

65. Не закрывайте гардинами и не загромождайте мебелью батареи центрального отопления.

66. Экономьте воду, помните, что вода не бежит сама в дома, а напор воды поддерживают мощные насосы, приводимые в движение электродвигателями. Поэтому чем экономней потреблять воду, тем меньше будут загружены и электродвигатели на насосных станциях.

67. Ежемесячно в один и тот же день месяца снимайте показания электросчетчика, сравнивайте потребление электроэнергии в настоящем месяце с предыдущим, анализируйте, отчего произошла экономия (или перерасход) электроэнергии, и делайте соответствующие выводы.

68. Не пытайтесь заниматься хищением электроэнергии. Во-первых, это безнравственно, а во-вторых, знайте, что не существует такого способа воровства электроэнергии, который бы не раскрыл опытный эксперт-электротехник. Имейте в виду, что в необходимых случаях с помощью лабораторных исследований легко определить, вращалась ли червячная передача электросчетчика в обратную сторону.

69. 70. Со всеми вопросами, замечаниями и предложениями, связанными с публикацией настоящих практических рекомендаций, а также за всевозможными техническими и методологическими консультациями просьба обращаться.

Режим работы УК ООО «Лидер»:
с 9-00 до 18-00. Обед с 13-00 до 14-00. ул. Лозицкой, 8

Телефоны обслуживающего персонала смотрите в разделе «Жилые дома» , выбрав интересующий дом.

Важно! Вся информация об УК «Лидер» находится в разделе «О компании».

ТЕЛЕВИЗОР СПИТ, А ДЕНЕЖКИ ИДУТ

В каждой квартире ночью можно увидеть светящиеся огоньки — электронная аппаратура находится в так называемом режиме сна — она только и ждет, когда вы нажмете кнопку на пульте дистанционного управления.

Конечно, очень удобно, не вставая с дивана, включить или выключить телевизор либо музыкальный центр.

Однако прикинем, во сколько обходится такой сервис.

Итак, телевизор с экраном среднего размера — с диагональю 20-21 дюйм в режиме сна (дежурном режиме) потребляет ток 75 мА (миллиампер), напряжение в сети 220 В (вольт) и, значит, потребляемая мощность по закону Ома P=I x U (мощность в ваттах, ток в амперах и напряжение в вольтах), для нашего спящего телевизора — Р=0,075 x 220=16,5 вт. Вроде бы совсем немного, меньше самой тусклой лампочки. Но теперь прикинем, сколько телевизор спит в сутки (предположим, вы смотрите телевизор шесть часов в день, значит, на сон ему остается 18 часов). За время, пока вы на работе, или на даче, или просто спите, он съедает в сутки 297 Bт•ч, а за месяц — 8910, то есть почти 9 кВт•ч.

А если у вас есть еще и музыкальный центр, которому для поддержания сонного режима требуется 65 мА (и при восемнадцати часах сна он потратит 7,7 кВт•ч в месяц). Видеомагнитофон берет поменьше -30 мА, (за месяц — 3,5 кВт•ч). Примерно столько же потребляет радиотелефон. Даже антенный усилитель умудряется потреблять 15 мА, как и электронные часы и другие приборы, снабженные блоками питания (в торговле называемые адаптерами).

Теперь подумаем, как можно, не создавая особых хлопот, сэкономить эти «сонные» киловатты электроэнергии. Проще всего с телевизором: у настоящего телевизора есть кнопка «Сеть», которая действительно отключает его от сети, и , если вы не поленитесь подойти к телевизору и нажать эту кнопку, уходя на работу или ложась спать, телевизор полностью выключится (кстати, вы не только электроэнергию сэкономите, но и обезопасите себя от такой неприятности, как самовозгорание телевизора в ваше отсутствие). Правда, попадаются еще телевизоры с кнопкой «Сеть», которая отключает только высокое напряжение, а весь блок питания телевизора остается в работе — телевизор вроде бы выключен из сети, однако находится под напряжением. Если вам попался такой экземпляр, то нужно или вынуть вилку из розетки, или поставить на провод выключатель. (Телевизор : экономия — 9 кВт • ч за месяц.)

Сложнее с видеомагнитофоном, он не отключается от сети даже при нажатой сетевой кнопке. Для полного отключения нужно вытащить шнур питания из розетки, но при этом исчезнут установки параметров (те, у кого часто отключают напряжение, сталкиваются с этой проблемой). Но трудность не только в этом. Если у вас антенна подключена к видеомагнитофону, а от него — к телевизору, то, выключив видеомагнитофон, вы ничего не увидите на экране, нужно или перетыкать антенну от видеомагнитофона к телевизору, или поставить антенный разветвитель. Если вы часто записываете программы с помощью программирования, лучше оставить видеомагнитофон подключенным к сети. (Видеомагнитофон: экономия — 3,5 кВт • ч за месяц.)

Настройки музыкального центра не должны сбиваться при пропадании напряжения, так что на его сетевой провод также можно поставить выключатель и подавать напряжение только при работе. (Музыкальный центр: экономия — 7,7 кВт • ч за месяц.)

Кстати, выключенный из сети блок питания радиотелефона — лучшая защита от диверсантов, которые не смогут воспользоваться вашим аппаратом для междугородных или даже для международных переговоров. Только учтите, что, когда сеть выключена, не сможет подзаряжаться аккумулятор трубки.

Если вы захотите проверить мои расчеты и сами попробуете измерить ток потребления вашей аппаратуры, то, во-первых, не забудьте, что ток измеряется включением амперметра в разрыв сетевого провода. При этом в тестере должен быть диапазон измерения переменного тока, а главное то, что импульсные блоки питания, стоящие в современной аппаратуре (телевизорах, компьютерах, мониторах), в момент включения потребляют ток в несколько ампер, и если вы, поставив переключатель амперметра, например, на диапазон 200 мА, включите телевизор, то бросок тока сожжет ваш прибор, поэтому ставьте тестер на измерение максимального тока (3-10 А).

Читайте так же:
Актей выключатель оптико акустический энергосберегающий

Выключатель с подсветкой для светодиодных ламп

Во многих выключателях встроена очень полезная функция – подсветка. С этой функцией исключены поиски выключателя в темной комнате. Как же она работает? Подсветка устроена довольно просто: под клавишей выключателя помещается миниатюрный световой индикатор, а в клавише сделано небольшое окно, через которое можно видеть состояние выключателя.

Выключатель

Выключатель с подсветкой в интерьере комнаты

В качестве индикатора используют неоновую лампочку или светодиод, в работе каждого из них есть свои особенности. Во многих источниках сообщается, что такие выключатели можно использовать только с галогенными и лампами накаливания, так как энергосберегающие – с такими выключателями вспыхивают, а светодиодные – немного светятся в темноте.

Для того чтобы разобраться с этими явлениями надо понимать механизм работы каждого индикатора.

Неоновый индикатор

Во многих выключателях используют неоновую лампочку в качестве индикатора, она представляет собой чаще всего стеклянный баллон, заполненный неоном, в котором размещены на некотором расстоянии друг от друга два электрода.

Давление газа очень небольшое – несколько десятых долей мм ртутного столба. В такой среде между электродами при подаче на них напряжения возникает так называемый тлеющий разряд – это светятся ионизированные молекулы газа. В зависимости от рода газа цвет свечения может быть самым разным: от красного у неона, до сине-зеленого у аргона.

Лампа

На рисунке изображена миниатюрная неоновая лампочка, в электротехнике их чаще всего используют в качестве индикаторов наличия тока.

Подсветка на неоновой лампочке

Выключатель с подсветкой на неоновой лампочке очень надежен, срок службы лампочки более 5 тыс. часов, индикатор хорошо виден в темноте. Схема подключения проста.

Схема

Схема подключения подсветки на неоновой лампочке

На схеме изображено подключение подсветки из неонки к выключателю. L1 – это неоновая лампочка из типа МН-6, ток 0,8 мА, напряжение зажигания 90 В, это данные из справочника. R1 – гасящий резистор, S1 – выключатель освещения.

Расчет гасящего резистора

Сопротивление резистора рассчитывается по формуле:

где R – сопротивление резистора (Ом);
∆U – разность (Uс – Uз) между напряжением сети и зажиганием лампы в вольтах;
I – сила тока лампы (А).

Ближайший номинал резистора 150 кОм. Вообще номинал резистора можно выбирать в пределах от 150 до 510 кОм, при этом лампочка нормально работает, при большем номинале увеличивается долговечность, и уменьшается рассеиваемая мощность.

Мощность резистора вычисляется по следующей формуле:

где P – мощность (Вт), рассеиваемая на резисторе;

P=220-90 × 0,0008 = 0,104 Вт.

Ближайший больший номинал мощности резистора – 0,125 Вт. Этой мощности вполне хватает, резистор едва заметно нагревается, не более чем до 40-50 градусов, что вполне допустимо. Если есть возможность, желательно поставить резистор мощностью 0,25 Вт.

Конструкция

Если припаять вывод резистора к любому выводу лампы, можно собрать схему.

Схема

Собранная подсветка своими руками

Остается собранную схему подключить. Для этого при снятом корпусе выключателя вывод резистора подключается к одной клемме, а лампочки – к другой.

Схема

Схема работы неоновой подсветки

Теперь при выключенном положении клавиши, ток будет идти через схему (нижний рисунок), а так как ток ограничен сопротивлением, то силы его хватит, чтобы зажечь подсветку, но совершенно недостаточно для работы лампы освещения. При включении выводы схемы подсветки закорачиваются, и ток течет через выключатель, минуя подсветку, к лампе освещения (верхний рисунок).

Такую подсветку можно поставить в выключатель, в котором она не была предусмотрена изготовителем, при этом в клавише включения не обязательно сверлить отверстие. Материал, из которого делают клавиши, легко просвечивается, и в темноте выключатель довольно хорошо виден, поэтому сверлить отверстие для лампочки не обязательно.

Светодиодная подсветка

Часто встречается подсветка из светодиода, который представляет собой полупроводниковый прибор излучающий свет при протекании через него электрического тока.

Цвет светоизлучающего диода зависит от материала, из которого он изготовлен и в некоторой степени от приложенного напряжения. Светодиоды представляют собой соединение двух полупроводников различных типов проводимости p и n. Называют это соединение – электронно-дырочный переход, именно на нем возникает излучение света при прохождении через него прямого тока.

Возникновение светового излучения объясняется рекомбинацией носителей зарядов в полупроводниках, на приведенном ниже рисунке изображена примерная картина происходящего в светодиоде.

Схема

Рекомбинация носителей зарядов и возникновение светового излучения

На рисунке кружком со знаком «–» обозначены отрицательные заряды, они находятся в зеленой области, так условно обозначена область n. Кружок со знаком «+» символизирует положительные носители тока, находятся они в коричневой зоне p, граница между этими областями и есть p-n переход.

Когда под действием электрического поля положительный заряд преодолевает p-n переход, то прямо на границе он соединяется с отрицательным. А так как при соединении происходит и возрастание энергии от столкновения этих зарядов, то часть энергии идет на нагревание материала, а часть излучается в виде светового кванта.

Конструктивно светодиод представляет собой металлическое, чаще всего медное основание, на котором закреплены два кристалла полупроводников разной проводимости, один из них является анодом, другой – катодом. К основанию приклеен алюминиевый рефлектор с закрепленной на нем линзой.

Как можно понять из рисунка ниже, немало в конструкции уделено внимания отводу тепла, это неслучайно, так как полупроводники хорошо работают в узком тепловом коридоре, выход за его границы нарушает работу прибора вплоть до выхода из строя.

Схема

Схема устройства светодиода

У полупроводников с ростом температуры, в отличие от металлов, сопротивление не увеличивается, а напротив, уменьшается. Это может вызвать неконтролируемое увеличение силы тока и соответственно нагрева, при достижении определенного порога происходит пробой.

Светодиоды очень чувствительны к превышению порогового напряжения, даже кратковременный импульс выводит его из строя. Поэтому токоограничивающие резисторы должны быть подобраны очень точно. Кроме того, светодиод рассчитан на прохождение тока только в прямом направлении, т.е. от анода к катоду, если прикладывается напряжение обратной полярности, то это также может вывести его из строя.

Читайте так же:
Монтаж бокса для автоматических выключателей

И все же, несмотря на эти ограничения, светодиоды широко применяются для подсветки в выключателях. Рассмотрим схемы включения и защиты светодиодов в выключателях.

Подсветка на светодиоде

На рисунке ниже приведена схема подсветки. Она содержит: гасящий резистор R1, светодиод VD2 и защитный диод VD1. Буква а – анод светодиода, k – катод.

Схема

Схема подсветки на светодиоде

Так как рабочее напряжение светодиода гораздо ниже сетевого, то для его снижения используют гасящие резисторы, в зависимости от потребляемого тока его сопротивление будет разным.

Расчет сопротивления резистора

Сопротивление резистора R рассчитывается по формуле:

formula1

где R – сопротивление гасящего резистора (Ом);

Uc – напряжение сети (здесь 220 В);

Uсд – рабочее напряжение светодиода (В);

Iсд – рабочий ток светодиода (А);

Сделаем расчет гасящего резистора для светодиода АЛ307А. Исходные данные: рабочее напряжение 2 В, сила тока от 10 до 20 мА.

Используя вышеприведенную формулу, Rмакс=(220 – 2)/0,01=218 00 ОМ, Rмин= (220 – 2)/0,02=10900 ОМ. Получаем, что сопротивление резистора должно лежать в пределах от 11 до 22 кОм.

Расчет мощности

Также надо рассчитать мощность, рассеиваемую резистором, ее рассчитывают по формуле:

formula2

где Р – мощность, рассеиваемая на резисторе (Вт);

Uc – напряжение сети (здесь 220 В);

Uсд – рабочее напряжение светодиода (В);

Iсд – рабочий ток светодиода (А);

Подсчитываем мощность: Рмин=(220-2)*0,01 = 2,18 Вт, Рмакс=(220-2)*0,02=4,36 Вт. Как следует из расчета, мощность, рассеиваемая резистором, довольно значительная.

Из номиналов мощностей резисторов самый ближайший больший – это 5 Вт, но такой резистор довольно больших габаритов, и спрятать его в корпус выключателя не удастся, да и впустую тратить электроэнергию нерационально.

Так как расчет проводился на максимально допустимый ток светодиода, а в таком режиме у него многократно снижается долговечность, снизив ток в два раза, можно убить двух зайцев: уменьшить рассеиваемую мощность и увеличить срок службы светодиода. Для этого надо просто увеличить сопротивление резистора вдвое до 22-39 кОм.

Схема

Подключение подсветки к клеммам выключателя

На рисунке выше приведена схема подключения подсветки к клеммам выключателя. К одной клемме подходит фазный провод сети, ко второй –провод от лампочки освещения, подсветка подключается к двум этим клеммам. Когда выключатель разомкнут, то через схему подсветки течет ток, и она горит, но лампа освещения не светится. Если выключатель замкнуть, то напряжение потечет по цепи, минуя подсветку, освещение включится.

В заводских выключателях с подсветкой чаще всего используется схема, изображенная на рисунке выше. Номинал резистора – от 100 до 200 кОм, производители идут на сознательное уменьшение тока через светодиод до 1-2 мА, а значит, и яркости свечения, потому что в ночное время этого вполне достаточно. В то же время снижается рассеиваемая мощность, можно не устанавливать и защитный диод, потому что обратное напряжение не превышает допустимое.

Применение конденсатора

В качестве гасящего элемента можно применить конденсатор, он в отличие от резистора имеет не активное, а реактивное сопротивление, поэтому при прохождении через него тока на нем не выделяется тепло.

Все дело в том, что при движении электронов по проводящему слою резистора, они сталкиваются узлами кристаллической решетки материала и передают им часть своей кинетической энергии. Поэтому материал нагревается, а электрический ток испытывает сопротивление продвижению.

Совершенно другие процессы возникают при движении тока через конденсатор. Конденсатор в простейшем случае представляет собой две металлических пластины, разделенные диэлектриком, так что постоянный электрический ток через него течь не может. Но зато на этих пластинах может сохраняться заряд, и если его периодически заряжать и разряжать, то в цепи начинает течь переменный ток.

Расчет гасящего конденсатора

Если конденсатор включить в цепь переменного тока, то он через него будет протекать, но в зависимости от емкости и частоты тока его напряжение снизится на какую-то величину. Для вычисления используют следующую формулу:

formula3

где Xc – емкостное сопротивление конденсатора (ОМ);

f – частота тока в сети (в нашем случае 50 ГЦ);

С – емкость конденсатора в (мкФ);

Для расчетов эта формула не совсем удобна, поэтому на практике чаще всего прибегают к следующей – эмпирической, которая позволяет с достаточной точностью проводить подбор конденсатора.

Исходные данные: Uc –220 В; Uсд –2 В; Iсд –20 мА;

Находим емкость конденсатора С =(4,45*20)/(220-2)=0,408 мкФ, из ряда номинальных емкостей Е24 выбираем ближайший меньший 0,39 мкФ. Но при выборе конденсатора необходимо еще учитывать его рабочее напряжение, оно должно быть не меньше, чем Uc*1,41.

Дело в том, что в цепи переменного тока принято различать действующее и эффективное напряжение. Если форма тока синусоидальная, то действующее напряжение в 1,41 больше эффективного. Значит, конденсатор должен иметь минимальное рабочее напряжение 220*1,41=310 В. А так как такого номинала нет, то ближайший больший будет 400 В.

Для этих целей можно использовать пленочный конденсатор типа К73-17, его габариты и масса вполне позволяют разместить в корпусе выключателя.

Выключатель в работе. Видео

О совместной работе светодиодной лампы и выключателя с подсветкой можно узнать из этого видео.

Все расчеты, сделанные в статье, действительны для режима нормального свечения, при использовании их для выключателей номиналы резисторов можно скорректировать в сторону увеличения в 2-3 раза. Это уменьшит яркость свечения светодиода, неонки и мощность рассеивания резисторов, а значит, и их габариты.

Если в качестве гасящего сопротивления используется конденсатор, то его номинал нужно корректировать в сторону уменьшения для снижения яркости, а также габаритов, но рабочее напряжение конденсатора снижать нельзя.

Снижение силы тока через подсветку уменьшает вероятность мигания энергосберегающих ламп в темноте, так как уровень зарядки входного конденсатора в импульсном преобразователе этих ламп не достигает порога запуска.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector